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Summary

1. It is often highly desirable to know not only where species are likely to occur (i.e. occupancy) but also how

many individuals are supported by a given habitat (i.e. density). For many animals, occupancy and density may

be determined by distinct ecological processes.

2. Here we develop a novel abundance model as the product of landscape-scale occupancy probability and habi-

tat-scale density given occupancy. One can conceptualize our model as fully packing a landscape with home

ranges or territories based on habitat quality, and then subtracting territories based on a probabilistic process

that accounts for the fact that species rarely exhibit full occupancy across heterogeneous landscapes. The model

is designed to predict abundance at fine spatial scales, using resolutions equal to or smaller than a single home

range or territory.

3. We demonstrate this model on the Black-backed Woodpecker (Picoides arcticus), a species of management

concern linked to post-fire forests. Occupancy is derived from a regional monitoring effort, while density given

occupancy comes from a telemetry study of variation in territory size. A Bayesian framework is used to combine

independent occupancy and home-range size models and predict abundance of Black-backedWoodpeckers at 4

fires that burned in 2012 or 2013. Predictions are evaluated with independently collected survey data, showing

that the model is successful at predicting both absolute abundance at fires as well as relative abundance within

and among fires.

4. The conceptualmodel presents a promising new framework for fine-scalemodelling of density and abundance

for other territorial yet elusive species. Telemetry and occupancy data are widely collected for many species, but

rarely utilized in combination, and the ecological exploration of the factors that determine occurrence versus

home-range size may provide useful biological insight. As applied to the Black-backed Woodpecker, the model

provides a tool for resource managers to explore trade-offs in retaining burned forest habitat versus managing

for other post-fire goals, such as salvage logging or reforestation efforts that require snag removal.

Key-words: Bayesian, Black-backed Woodpecker, density, home range, Picoides arcticus,

population size, wildlife habitatmodel

Introduction

Abundance is a critical parameter of interest for management

and conservation of wildlife populations, yet it remains an

enigmatic quantity that frequently defies estimation. If the tar-

get species is stationary and homogenously distributed, then

abundance is a simple scaling of density, but homogeneity is

rare and most species show highly skewed abundance profiles

within their distributions (Brown, Mehlman & Stevens 1995;

Gaston 2003). For total abundancewithin a closed population,

capture–mark–recapture methods provide statistically elegant

estimations of population size given fulfilment of data

demands and a marked population (Sollmann et al. 2013).

Prediction of abundance, however, requires understanding of

not just where species occur, but also how they are spatially

arranged or aggregated within the areas of occurrence or use

(Gaston 2003). Without understanding both processes, accu-

rately predicting abundance surfaces may not be possible. For

example, N-mixturemodels can predict abundance as resulting

from a single process related to environmental covariates, but

these predictions may only provide relative rather than abso-

lute indices (Royle &Dorazio 2006; Zipkin et al. 2014).

Many scientific, management, or conservation goals require

accurate and fine-scale predictions of absolute abundance that

can be extrapolated to other landscapes. Additionally, many

organisms are not distributed in the configurations and con-

centrations that facilitate abundance modelling by established

methods. For example, Poisson-type processes (e.g. N-mixture

models) fit better when the number of individuals recorded per

sample is >1. Formany species, however, abundance data typi-

cally are recorded as 1 or 0, and only rarely are abundances >1*Correspondence author. E-mail: morgan.tingley@uconn.edu
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observed (Brown, Mehlman & Stevens 1995). This numerical

limitation is the status quo for species that are wide-ranging

(i.e. have large home ranges), highly territorial (i.e. exhibit little

overlap in territories), or cryptic, including many mammals

and birds, particularly those at higher trophic levels and likely

to be targets of management or conservation concern (Gopa-

laswamy et al. 2012a,b).Moreover, the concentration of abun-

dance data into counts of 0 or 1 is expected for any non-

clumped species when the sampling unit is equal to or smaller

than the typical territory or home-range size.

For species with low abundance or lowdetection rates, occu-

pancy (i.e. the proportion of sampled area occupied or used by

a species; MacKenzie et al. 2002; MacKenzie 2005) has risen

as the preferred metric for evaluating spatial distributions in

heterogeneous landscapes (Gopalaswamy et al. 2012a). This

has been aided by the advent of flexible modelling frameworks

that account for detectability (i.e. the probability that not all

individuals present are detected) by treating non-detections as

a type of zero-inflation that can arise from both state and

observation processes (MacKenzie et al. 2006). Managers and

conservationists, however, are often concerned not only with

where a species occurs, but how many individuals occur there.

Occupancy is mathematically derived directly from abun-

dance, but the relationship between occupancy and abundance

is species-specific, and generally not linear (Gaston 1999). Cali-

brating occupancy to relative abundance is possible (Royle &

Nichols 2003), but has yielded widely variable results, likely

due to uncontrollable sampling processes (Gopalaswamy et al.

2015). Even at fine spatial resolutions, when occurrence closely

approximates abundance, occupancy does not differentiate

individuals, and thus should not be summarized across spatial

units to approximate abundance. For these reasons, occu-

pancy alone is often a poor surrogate for abundance.

Much of the divergence of abundance from occupancy can

be attributed to behaviour, and the complex ways with which

species form spatial aggregations in response to resources (in-

cluding food), conspecifics, other competitors and predators

(Gaston 2003; Yackulic et al. 2014). Although an ideal abun-

dance model would account mechanistically for all such fac-

tors, a generalizedmodel of such complexity is intractable. For

many species, however, the various behavioural responses that

integrate to create abundance patterns can be indirectly

assessed through variation in home-range or territory size (van

Beest et al. 2011). In a fully occupied landscape, home-range

size and home-range overlap are key determinants of the abun-

dance–occupancy relationship (McLoughlin, Ferguson &

Messier 2000).

Here we describe a new theoretical model that integrates the

probability of occupancy with home-range size variation to

predict absolute abundance across a spatially heterogeneous

landscape (Fig. 1). Through the integration of complementary

information from different data sources, we build upon the

theoretical framework recently developed for spatial capture–
recapture models which has sought to better describe home-

range shapes in the context of abundance estimation (Soll-

mann et al. 2013; Popescu, De Valpine & Sweitzer 2014). Our

model is explicitly developed for fine-resolution spatial

modelling of abundance, where spatial sampling units are

equal to or smaller than average home-range sizes, such that

occurrence approximates abundance.

We illustrate this model through a case study predicting the

abundance of Black-backed Woodpeckers (Picoides arcticus)

in recently burned forests of California, USA. The stochastic

and unpredictable nature of wildfire and the rapid post-fire

decline in the economic value of timber necessitates prompt

assessment of post-fire forest resources and wildlife popula-

tions to make timely decisions about post-fire forest manage-

ment. Our aim in applying our theoretical model to Black-

backedWoodpeckers was to develop a tool to allow landman-

agers to make decisions about burned forest management that

account for both spatial variation in abundance and total

absolute abundance of Black-backed Woodpeckers on the

local landscape. We parameterize our abundance model using

occupancy data on Black-backedWoodpeckers collected at 94

fires that burned in California between 2009 and 2013, and

with home-range estimates of 22 individual birds tracked at

three fires between 2011 and 2013. We then apply the model to

make spatially explicit predictions of woodpecker abundance

at four fires that burned in 2012 or 2013, and evaluate our pre-

dictions using independent survey data collected across those

fires one year after they burned.

Conceptual framework

Our abundancemodel (Fig. 1) integrates the factors that deter-

minewhere a species is likely to occur (occupancy) with the fac-

tors that determine how many individuals inhabit an occupied

area (home-range or territory size variation). Such a model

accounts for broad-scale environmental gradients that deter-

mine distributions (e.g. climate and elevation) as well as fine-

scale habitat variables that determine aggregation. A dis-

cretized outcome of our model can be imagined as fully pack-

ing a landscape with home ranges, and then subtracting home

ranges based on a probabilisticmodel that accounts for the fact

that heterogeneous landscapes are rarely occupied at maxi-

mum density (Fig. 1). The continuous parameterization of our

model as implemented calculates the expected density within

any given spatial unit and then calibrates this density by the

probability that the spatial unit is used by the target species.

In building a spatial model at the subhome-range scale, we

interpret occupancy as the proportion of time that a focal spe-

cies uses a spatial unit during a defined time period (MacKen-

zie 2005), which is consistent with and statistically identical to

most contemporary uses (Bailey, MacKenzie & Nichols 2014).

We also adopt here the terminology of Burt (1943), describing

a home range as the area used by an individual over some per-

iod of time (e.g. a breeding season). As proposed, our model

assumes that home ranges are distinct and do not overlap (typ-

ically a characteristic of ‘territories’), although the abundance

model could be easily modified to allow for overlapping home

ranges (seeDiscussion).

While occupancy modelling has been widely applied to con-

servation and management objectives, intra-species variation

in home-range size is less frequently evaluated (van Beest et al.
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2011). A fundamental feature of home-range size variation in

many species is that a home range is only as big as necessary to

provide adequate resources (Odum & Kuenzler 1955;

McLoughlin & Ferguson 2000; Adams 2001). Larger home

ranges of territorial species require greater patrolling efforts

(Pyke 1979; Hixon, Carpenter & Paton 1983; Eason 1992), giv-

ing less time for foraging or parental care (Pyke 1979; Schoener

1983; Sillett, Rodenhouse & Holmes 2008) and incurring

greater energetic costs (Myers, Connors & Pitelka 1979; Car-

penter, Paton & Hixon 1983; Eason 1992), either of which

could reduce individual fitness (Both & Visser 2000; Sillett,

Rodenhouse & Holmes 2008). Convergent pressures constrain

home-range size to optimize boundaries around the smallest

areas that provide the resources necessary for reproduction

and survival (Adams 2001).

Empirical evaluations of home-range size can yield species-

specific equations that describe the scaling relationship of

home ranges to resources. Mathematically, home-range size,

H, can be modelled as a linear combination of resources, X,

and fit through an appropriate link function (e.g. logarithmic).

When such a model is applied to a spatially explicit resource

map with grid size smaller than a home range, the resulting

value for cell i is interpreted as the expected home-range size of

an individual if its habitat were homogenously filled with

resources at the density of cell i. It is thus easier to transform

this quantity:

Di ¼ c=Hi ¼ c=fðXiÞ; (eqn 1)

where f(Xi) is the home-range variation function, and c is a

constant that rescales from the unit area of home-range size

(e.g. km2) to the area of grid cell i. The transformed quantity,

Di, represents the maximum density of the species expected per

unit area given the resources available in area i. The scale at

which the model can be implemented is variable, but the incor-

poration of spatial heterogeneity into both occupancy and

home-range size components facilitates model implementation

at fine spatial scales (i.e. smaller than a single home range).

Where resource heterogeneity exists within home ranges, small

predictive grid sizes will be optimal and predicted values of D

will be <1 or <<1.
The maximum density given resources, Di, implies that

all home ranges are occupied and individuals are continu-

ously packed across a landscape. Occupancy is often <1

and thus Di overestimates true abundance. We must thus

separately model the environmental factors, Ei, that

describe the probability that cell i is used. This probability

of occupancy, wi, can be modelled as a linear combination

of cell-specific covariates Ei through a logit link function,

and given adequate survey data, this model can estimate

parameters while accounting for false absences in the

underlying data (e.g. MacKenzie et al. 2002). While any

specific actualization of home-range filling across a land-

scape would be conceptualized as a Bernoulli process

through which individual home ranges are either occupied

or not occupied given underlying environmental conditions,

the average outcome can be estimated simply by the equa-

tion

bDi ¼ wi �Di: (eqn 2)

The quantity bDi represents the expected density of

individuals in area i, accounting for incomplete habitat usage.

The total abundance of individuals, NI, within area I, com-

posed of i = 1 ,. . ., m cells – each with an expected density – is
the sum of those cells:

NI ¼
Xm

i¼1
bDi: (eqn 3)

Simply put, through the multiplicative combination of two

component models of space use and space filling, wi and Di, a

spatial summation of absolute abundance, NI, can be esti-

mated.

Field implementation ofmodel

Our case study implements the previously described con-

ceptual model within a Bayesian framework to predict

abundance of Black-backed Woodpeckers in recently

burned forests of the Sierra Nevada, southern Cascades

and Modoc Plateau of California. The abundance predic-

tion is a derived combination of two component models,

one for Black-backed Woodpecker occupancy (Saracco,

Siegel & Wilkerson 2011) giving wi and one for home-

range size (Tingley et al. 2014) giving Di. For more

information on data sources and individual model testing

and evaluation, please refer to Saracco, Siegel & Wilker-

son (2011) or Tingley et al. (2014). For a more thorough

Fig. 1. Conceptual model integrating home-

range size variation and occupancy probabil-

ity to estimate density of individuals in a

heterogeneous environment.
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description of our methods than is provided below,

particularly parameterizations of wi and Di as used in this

case study, please see Appendix S1 in Supporting Infor-

mation.

OCCUPANCY MODEL FOR w i

Occupancy models estimate a location’s probability of usage

by a species, unbiased by false absences (Bailey, MacKenzie &

Nichols 2014). Survey data inherently contain an unknown

quantity of false absences (i.e. non-detections when the species

was truly present), and accounting for themprior to interpreta-

tion of data is critical. The model used here to predict wi,

parameterized following Saracco, Siegel & Wilkerson (2011),

follows a ‘single-season’ occupancy modelling structure

(MacKenzie et al. 2002), although a generalized implementa-

tion of our abundancemodel could arguably use any of numer-

ous available methods to model the true probability of a site’s

usage by a species.

Data to parameterize the occupancy model come from

Black-backed Woodpecker surveys we conducted as part of

the USDA Forest Service’s regional Management Indicator

Species (MIS) monitoring programme across ten National

Forests in California. Between 2009 and 2013 we visited

approximately 50 fires annually that had burned in the

10 years prior to each sampling year (roughly, the time per-

iod in which Black-backed Woodpeckers are likely to use

burned stands), and surveyed at up to 20 point-count sta-

tions per fire. Black-backed Woodpecker surveys were con-

ducted during a single visit to each point, with each point

visit divided into five passive and three broadcast survey

intervals. Although many fires were surveyed repeatedly in

successive years as part of our monitoring, we used data

from only the first year in which each fire was surveyed in

order to avoid pseudoreplication at the point level. Our

occupancy model used data from 1707 unique point counts

surveyed across 94 fires between 2009 and 2013.

Different covariates were used for modelling occupancy and

detectability, following Saracco, Siegel & Wilkerson (2011).

Detectability was modelled as a function of survey interval

duration (3-minute versus 2-minute), survey type (passive ver-

sus broadcast) and day of year. Occupancy at survey points

was modelled with multiple covariates: latitude, elevation

(orthogonal to latitude by using elevation~latitude residuals)

including a quadratic effect, pre-fire canopy cover, fire severity

(% change in canopy cover), the presence of large trees (Cali-

fornia Wildlife Habitat Relationships [WHR] size class >3)
andWHR forest class (included as a random effect). Although

Saracco, Siegel & Wilkerson (2011) also included snag density

as a covariate, it was not informative for predicting occurrence,

and sowe excluded it fromour occupancymodel.

HOME-RANGE SCALING MODEL FOR D i

To parameterize the model of home-range scaling, we used

data from an independent study exploring variation in

home-range size of Black-backed Woodpeckers nesting in

montane burned forests of northern California (Tingley et al.

2014). For that study, we radio-tracked Black-backed Wood-

peckers nesting in three forested areas of California that

burned between 2 and 5 years before the initiation of tracking.

Results reported by Tingley et al. (2014) include data from 15

individual home ranges tracked in 2011 and 2012, and here, we

supplement this with seven additional birds tracked in 2013.

To calculate home-range size, we used Brownian bridge ker-

nel estimation, which accounts for the temporal autocorrela-

tion present in most tracking data (Horne et al. 2007; Tingley

et al. 2014). Home-range sizes evaluated at the 95th percentile

ranged in size from 24 to 304 ha. Tingley et al. (2014) evalu-

ated several factors that could explain this variation and used a

multi-model framework to find best support for a loglinear

relationship of snag basal area to home-range size. As snag

basal area increased, home-range size decreased. We used the

22 home ranges to fit a Bayesian model of home-range size

using the samemodel structure as the final model employed by

Tingley et al. (2014).

PREDICTING ABUNDANCE

Posterior predictive surfaces of wi and Di were derived at the

four evaluation fires using gridded (raster) spatial data for the

various input variables and the respective Bayesian parameter

estimates for wi and Di. Implementing eqn (2), the posterior

surfaces of wi andDiwere combined to give a posterior predic-

tion for bDi. After deriving bDi, any spatial group of pixels can

be summed via eqn (3) to produce NI. The clear advantage of

an integrated Bayesian framework for model prediction is that

uncertainty in component models of occupancy and home-

range variation are propagated through the calculations and

into bDi, thus providing critical information on spatial uncer-

tainty in abundance, as well as uncertainty in values of man-

agement interest, such asNI.

A limitation in predictively applying the home-range

model of Tingley et al. (2014) in this context is that snag

basal area is not generally an available data layer for

recently burned forests. To apply the home-range model in

a predictive framework, we had to first model snag basal

area as a function of available, remotely sensed habitat

variables. We used 3237 sample points of snag basal area

within recently burned forests occupied by Black-backed

Woodpeckers (Tingley et al. 2014) to create a loglinear

model predicting snag basal area as a function of three

variables: pre-fire canopy cover, burn severity (1st and 2nd

order polynomials) and dominant tree size class (ordinal),

as well as interactions between burn severity and pre-fire

canopy cover (data sources as described previously). Identi-

cal to the other component models, we fit this snag basal

area model in a Bayesian framework and used the full pos-

terior to propagate uncertainty through to final estimates

of bDi and NI.

For the fitting of all Bayesian models used in the case study,

we implemented Markov chain Monte Carlo (MCMC) meth-

ods in the software package JAGS (Plummer 2003) using the R

package ‘R2jags’ (R Core Team 2014; Su & Yajima 2014). We
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used vague prior distributions for all model parameters. For

covariate effects in each model we used normal priors with a

mean of 0 and a precision of 0�001. For the intercepts of the
detection and w models, we defined priors for inverse-logit

transformed parameters using a uniform prior bounded by 0

and 1. After a burn-in of 25 000, the posterior was sampled

from three chains yielding 7500 posterior draws. In all cases,

convergence was assumed when the Gelman-Rubin statistic of

all monitored parameters calculated across three chains was

<1�1 (Gelman et al. 2004).

WOODPECKER SURVEYS FOR MODEL EVALUATION

We evaluated our abundance model for Black-backed

Woodpeckers by comparing predicted density surfaces for

four fires that burned in 2012 or 2013 with thorough grid-

based surveys for woodpeckers 1-year post-fire, before post-

fire logging occurred. We conducted the evaluation in new

fires that had not been previously used for either occupancy

or telemetry work, in order to provide an independent pre-

dictive test.

Grid-based evaluation surveys were conducted at the Barry

Point, Chips and Reading fires in 2013, and the Rim fire in

2014. All sites had burned in the year before surveys, and fires

ranged in size from 11 424 ha (Reading) to 102 925 ha (Rim).

Surveys were conducted at the vertices of a 500-m grid

throughout large subsets of USDA Forest Service land that

had been forested pre-fire and could be safely accessed (gener-

ally with slope <35°). Using 6-min broadcast surveys, we sur-

veyed for Black-backedWoodpeckers at 171, 284, 165 and 488

points within the Barry Point, Chips, Reading and Rim fires,

respectively (Fig. 2).

MODEL EVALUATION CALCULATIONS

For each fire, predictive models for wi, snag basal area, Di andbDi were applied on a pixel-by-pixel basis using rasters of remo-

tely sensed environmental and habitat variables. For every

pixel, parameter values for component models were randomly

drawn 7500 times (an arbitrarily large number) from each pos-

terior distribution and used to derive 7500 posterior predic-

tions of wi, snag basal area, Di and bDi. Posterior prediction

distributions were summarized by mode, standard deviation

and 95% Bayesian credible interval (BCI) for each pixel. In

some sections of each fire, snag basal area was predicted to be

far greater or far lower than had been used as training data for

the home-range size variation model (H). Because of the log

link, such snag values predicted impossibly large or small

home-range sizes. Consequently, we truncated home-range

size predictions to a minimum of 20 ha and a maximum of

825 ha, which are the limits of observed 95th-or-greater per-

centile home range sizes of Black-backed Woodpeckers across

published studies (Rota et al. 2014; Tingley et al. 2014).

We compared location and frequency of Black-backed

Woodpeckers at the 4 fires to posterior predictions of bDi. We

wished to test whether bDi provided both a strong relative index

of abundance (i.e. through comparisons across space) and an

accurate absolute estimate of abundance. Although evaluation

data were not the true abundances (i.e. the evaluation data

were also biased by imperfect detection), the high overall prob-

ability of detection of our survey methods (~0�70; Saracco, Sie-
gel & Wilkerson 2011) justifies the use of these data for

evaluation purposes. To compare relative abundance we used

twometrics to assess predictive performance. Since the concep-

tual model was developed for fine-scale predictions at the

Fig. 2. Predicted density of Black-backedWoodpeckers (pairs/ha) at four fires, (a) Barry Point, (b) Reading, (c) Chips and (d) Rim, within (e) Cali-

fornia. Independent evaluation points were surveyed for woodpeckers across 500-m grids within accessible USDA Forest Service land at each fire.

Points with detections (solid circles) generally overlapwith areas of higher predicted density (redder colours).
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subhome-range scale where abundance approximates occur-

rence, observed abundance data were predominantly binary

and were treated as strictly binary. Consequently, evaluation

metrics were chosen for their ability to evaluate discrimination

of dichotomous variables (i.e. presence of a woodpecker at a

survey site versus its assumed absence) by a continuous predic-

tor ( bDi). Chosen metrics were: (i) the area under the receiving

operator curve (AUC); and (ii) the point biserial correlation

(rpb), which is equivalent to a Pearson correlation (Elith&Gra-

ham 2009). AUC evaluates discrimination based on relative

ranks, while rpb takes into account how far the prediction is

from the observation (Elith & Graham 2009). AUC scores

vary from 0 to 1, with a score of 0�5 indicating discrimination

no better than random. Biserial correlation, like the familiar

Pearson correlation, varies from�1 to 1, and follows a t distri-

bution. To assess absolute abundance, we took the total num-

ber of grid points with detections as our best estimate of the

true number of Black-backedWoodpeckers occupying the sur-

veyed portion of each fire. To calculate an equivalent predic-

tion of NI, we summed all values of bDi within 250 m of each

point (assumed maximum detection radius) to estimate a

point-level abundance, bDpt, and then excluded points with an

average bDi that represented home ranges >825 ha (i.e. too low

density to support individuals). The remaining bDpt were

summed and doubled, to translate from pairs (i.e. what the

model predicts) to individuals (i.e. what the surveysmeasure).

The contribution of component models to overall uncer-

tainty in NI predictions at each fire was evaluated by calculat-

ing three additional posterior NI distributions. For each of

these NI posteriors, component model parameters were held

fixed at mean posterior values for two models, while parame-

ters for the third model were drawn from the full posterior.

Thus, each calculation of NI illustrates the relative contribu-

tion of uncertainty in overallNI predictions per fire from com-

ponentmodels.

Results

After implementing the combined occupancy-telemetry abun-

dance model, predicted abundance of Black-backed Wood-

peckers at four fires showed strong agreement with both

relative and absolute abundance as measured through grid-

based surveys 1-year after fire. Woodpecker abundance and

density varied widely across the four fires, with detections at

47% of survey points at Barry Point, 35% of points at Read-

ing, 16% of points at Chips and 1% of points at Rim, which

translate to observed densities of 9�4, 6�9, 3�2 and 0�2 (910�3

pairs/hectare), respectively (Table 1; Fig. 2). These results cor-

related strongly (q = 0�98, P = 0�02) with modal predicted

average densities of woodpeckers in the surveyed portions of

these 4 fires, which varied from 6�8, to 6�1, to 2�1, to 1�3 (910�3

pairs/hectare) for Barry Point, Reading, Chips and Rim,

respectively (Table 1).

While the comparison of average predicted densities across

fires indicated that the abundance model was spatially trans-

ferrable, it is advantageous for management purposes for bDi

predictions to be relative within fires. In other words, we tested

whether areas with high predicted densities within individual

fires were also more likely to have detections. Points with

detections had a significantly higher mean predicted density

than points without detections (rpb = 0�402, t = 14�6,
P < 0�001; Fig. 3). Overall discrimination ability was high,

with anAUCvalue of 0�806.
Estimates of the total number of Black-backed Woodpeck-

ers in surveyed areas of the four fires demonstrated the model

was moderately successful at predicting absolute abundance

(Table 1). Observed totals overlapped 95% BCI of NI for

Reading and Chips and were just below and just above 95%

BCI for Rim and Barry Point, respectively. Relative contribu-

tion of component models to overall uncertainty in NI predic-

tions varied from fire to fire based on the underlying

environmental conditions, but generally the occupancy and

home-range size models contributed equally to overall uncer-

tainty, while the snag basal area model contributed less

(Fig. 4).

Discussion

CASE STUDY AS EVALUATION OF CONCEPTUAL MODEL

Abundance is a notoriously difficult ecological phenomenon to

predict as it is affected by myriad factors that can change in

importance at different spatial scales (Gaston 2003; He &

Gaston 2003). Here, we have outlined a new conceptual model

for predicting abundance that can be used at smaller spatial

scales, and which centres on independently modelling the

Table 1. Results of model-based abundance predictions and grid-based Black-backed Woodpecker surveys for four fires in California serving as

evaluation tests

Fire

Predictions* Observations

Mean bDi (pairs per ha) NI (total individuals)

Density

(pairs per ha)† NI (total individuals)

Barry point 0�0068 (0�0044–0�0113) 45�9 (29�3–75�8) 0�0094 80

Chips 0�0021 (0�0013–0�0043) 24�6 (10�3–47�2) 0�0032 45

Reading 0�0061 (0�0038–0�0102) 39�8 (23�4–66�0) 0�0069 57

Rim 0�0013 (0�0008–0�0024) 19�2 (7�6–41�8) 0�0002 6

*Model estimates given as: posteriormode (95%BCI).
†Observed density estimate assumes thatmales and females within pairs can be detected separately.
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relationships between the factors that determine home-range

size and the factors that determine landscape usage. Our case

study, which applies this model to Black-backedWoodpeckers

in burned forests of California, indicates that the method can

ably predict relative abundance across space, as well as abso-

lute abundance within defined areas.

However successfully our model predicted Black-backed

Woodpecker abundance, the evaluation identified several

aspects that could be improved. Foremost, our model predic-

tions showed low precision in total abundance (NI), with wide

95% BCIs. While the general accuracy of the predictions

should moderate concern over lack of precision, the model

would yield lower uncertainty with better data. Foremost, we

modelled snag basal area, adding uncertainty to home-range

size estimates (Fig. 4) that could have been avoided with direct

spatial sampling of snag basal area (e.g. via LiDAR). Uncer-

tainty in estimates is very important to know – even if inconve-

nient – and the Bayesian implementation of the full model

provided a relatively simple way to propagate parameter

uncertainty through to final abundance predictions (Fig. 4).

It is also important to consider that the evaluation data are

not perfect measures of abundance. Individual Black-backed

Woodpeckers may have gone undetected, resulting in underes-

timates of abundance. We consider this effect to be minimal,

however, as previous work has shown our broadcast surveys

to have a relatively high cumulative detection probability

(0�705; Saracco, Siegel &Wilkerson 2011). For Rim, in partic-

ular, our model overpredicted abundance, perhaps because the

fire was so large (3rd largest in recorded California history)

that colonizing woodpeckers may have not yet saturated avail-

able habitat after only 1 year. Rim was also larger than any of

the fires used to parameterize either the occupancy or home-

range size model. The size of fires is particularly relevant given

that the colonization dynamics by Black-backedWoodpeckers

in post-fire landscapes are poorly known (Pierson et al. 2010).

Within our study region, Black-backed Woodpeckers may

inhabit unburned forest in low densities (Fogg, Roberts &Bur-

nett 2014), but colonizers of new fires are believed to often be

immigrants from other, older fires. With extremely large fires,

such as Rim, there may not have been a large enough coloniz-

ing population to saturate available home ranges, leading to

the apparent over-prediction unique to that fire.

In the other three fires (Reading, Barry Point and Chips),

the abundance model appears to have under-predicted

(Table 1). We caution, however, that grid-based surveys may

have overestimated true abundance through double-counting.

Survey points were placed 500 m apart, yet Black-backed

Woodpeckers have home ranges that can encompass over

500 ha (Tingley et al. 2014). Efforts were made to limit dou-

ble-counting (e.g. by conducting survey points consecutively

on the same day), but without a fully colour-banded popula-

tion, it would be impossible to eliminate the possibility.

GENERALIZAT ION OF THE CONCEPTUAL MODEL

The conceptual model (Fig. 1) holds strong potential for appli-

cation to other species, particularly those that are territorial,

wide-ranging and poorly detected. This includes many mam-

mals, particularly carnivores, as well as many birds, including

but not limited to woodpeckers, raptors, pheasants and quail.

For many of these species, telemetry data have already been

extensively collected (e.g. https://www.movebank.org/) and

occupancy-style surveys are frequently conducted as part of

standard monitoring. While home-range scaling relationships

have not been modelled for most species, both theory and

empirical tests indicate that the negative relationship between

resource availability and home-range size is broadly generaliz-

able (McLoughlin & Ferguson 2000). To suggest just one

application, the model could be applied to populations of

Spotted Owl (Strix occidentalis), as this organism has been

tracked widely (Glenn, Hansen & Anthony 2004; Bond et al.

2013) and surveyed extensively (Yackulic et al. 2014), and

its population size is of conservation and management

importance.

The conceptual model is flexible, however, and the case

study with the Black-backed Woodpecker illustrates several

ways in which the model could be expanded, modified, or

improved for this or other species. To begin, the case study

presented a relatively simple example where home-range size

Fig. 3. Predictive ability of abundance model evaluated by indepen-

dent survey points combined across four fires. Boxplot (a) and logistic

regression model (b) of observed abundance versus the average pre-

dicted point-level density (pairs per ha). The ability of themodel predic-

tion to discriminate points with woodpeckers versus points without

woodpeckers is supported by both rpb andAUC.
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was determined to be well-predicted by a single resource.

Applications to other species may require more complicated

home-range size models, such as including multiple resources,

or age- and sex-specific relationships. It is generally poorly

known if different environmental and habitat factors influence

occurrence versus home-range size; jointly modelling these two

processes may produce ecological and macroecological

insights, in addition to the desired abundance estimates.

It is also possible to incorporate more complicated

intraspecific interactions into the abundance model. We previ-

ously found that home ranges of Black-backed Woodpeckers

closely abutted each other but showed little overlap (Tingley

et al. 2014). Thus, in this species, home-range size approxi-

mates territory size (sensuAdams 2001); however, some species

may show consistent overlap with neighbours even when home

ranges are described with realistic, concave polygons. If over-

lap occurs by a consistent percentage or absolute amount, then

home-range size models (eqn 1) can be scaled to account for

this shared area, or territory size can be used instead. If overlap

occurs commonly but unpredictably, then the model would

underestimate absolute abundance but would likely still pre-

dict relative abundance.

It is worth noting that this conceptual model of abundance

prediction relies on the focal species holding combined feeding

and breeding (i.e. Type-A) territories (Nice 1941) and showing

variation in territory size. Non-territorial, flocking or other-

wise aggregating species would not be modelled well with this

method, even where group size is likely determined by resource

availability. Neither would species with spatial patterns that

are strongly influenced by other species (e.g. mutualists or

parasites), although abundance models of two-species systems

could be a valid extension of this model. Alternatively, species

showing no variation in home-range size (e.g. regularly spaced

territories) have abundance patterns that would be perfectly

correlated with occupancy, and thus require only a scaling

factor to convert occupancy predictions to abundance

predictions.

Finally, as presented, our abundance model is static with

respect to time, yet abundance changes over time, and home

ranges can change in size over days, weeks and seasons (van

Beest et al. 2011). In the case study, we developed an abun-

dance prediction that was time-invariant, in that while our

model for w assumes that fire-level occurrence declines with

years since fire (see Appendix S1), neither the probability of

occupancy at points within fires nor home-range size were

modelled to vary with years since fire. Tingley et al. (2014)

found no strong temporal effect of fire age on Black-backed

Woodpecker home-range size in landscapes 2–5 years post-

fire, although a positive relationship has been suggested by

others working in other geographies (Rota et al. 2014). Future

extensions could include more dynamic temporal components

in either occupancy or home-range models to provide time-

specific abundance predictions.

APPLICATION TO MANAGEMENT

In addition to illustrating the conceptual model, the case study

provides a tool to make post-fire forest management decisions

in California while accounting for the potential impacts on

Black-backed Woodpeckers. We suggest that managers use

the abundance predictions to examine the relative benefits of

retaining one patch of forest versus another in the course of

exploring different forest management scenarios, as evaluation

indicated that abundance estimates held relative value across

Fig. 4. Violin plots showing density of poste-

rior estimates of Black-backed Woodpecker

abundance (NI) at each modelled fire (a–d) for
four different error propagations. In the first

three distributions in each plot, uncertainty

from only one model (occupancy, snag basal

area and home-range density, respectively) is

propagated through to NI. In the final distri-

bution, uncertainty from all component mod-

els is propagated.
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landscapes within our 4 evaluation fires. In some cases, other

competing land management objectives may preclude retain-

ing some of the best habitat; our model allows managers to

make quantitative predictions about the number and propor-

tion of expected Black-backed Woodpecker pairs that are pre-

dicted to be conserved or lost under any particular, spatially

explicit scenario of post-fire forest management, such as sal-

vage logging.

Further use of our Black-backed Woodpecker abundance

model could estimate abundance in different fires, abundance

across different forest management regimes or ownerships,

and changes in abundance over time. Given enough computa-

tional time (likely weeks to months, for one desktop proces-

sor), it could be used to estimate total Black-backed

Woodpecker population sizes across all recently burned fires in

the region. We caution, however, that the model should be

applied with care to conditions outside the range of covariates

upon which the model was fit. For example, applying the

model outside California, applying it to unburned forest, or

applying it to forest that burned >10 years previously, are not

recommended without additional testing. The models for

home-range variation and occupancy can be updated with new

information, so themodel parameterization could be expanded

in the future to include these additional conditions.
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