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Abstract
Climate variation and trends affect species distribution and abundance across large 
spatial extents. However, most studies that predict species response to climate are 
implemented at small spatial scales or are based on occurrence-environment rela-
tionships that lack mechanistic detail. Here, we develop an integrated population 
model (IPM) for multi-site count and capture-recapture data for a declining migratory 
songbird, Wilson's warbler (Cardellina pusilla), in three genetically distinct breeding 
populations in western North America. We include climate covariates of vital rates, 
including spring temperatures on the breeding grounds, drought on the wintering 
range in northwest Mexico, and wind conditions during spring migration. Spring 
temperatures were positively related to productivity in Sierra Nevada and Pacific 
Northwest genetic groups, and annual changes in productivity were important pre-
dictors of changes in growth rate in these populations. Drought condition on the 
wintering grounds was a strong predictor of adult survival for coastal California and 
Sierra Nevada populations; however, adult survival played a relatively minor role in 
explaining annual variation in population change. A latent parameter representing a 
mixture of first-year survival and immigration was the largest contributor to varia-
tion in population change; however, this parameter was estimated imprecisely, and 
its importance likely reflects, in part, differences in spatio-temporal distribution of 
samples between count and capture-recapture data sets. Our modeling approach 
represents a novel and flexible framework for linking broad-scale multi-site monitor-
ing data sets. Our results highlight both the potential of the approach for extension 
to additional species and systems, as well as needs for additional data and/or model 
development.
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1  | INTRODUC TION

Widespread population declines, range retractions, and extinctions 
highlight an urgent need to better understand drivers of wildlife 
population dynamics (Ceballos, Ehrlich, & Dirzo, 2017; Tittensor 
et al., 2014). Climate variation and trends can play a crucial role in 
determining population trajectories (Stephens et al., 2016). Most 
studies that relate climate to populations across large spatial extents 
are based on occurrence or count data (Dawson, Jackson, House, 
Prentice, & Mace, 2011; Pacifici et al., 2015). These data types have 
become relatively common and available across large spatial ex-
tents (Sullivan et al., 2009) and can be used to model both popula-
tion state and demographic rate parameters (Dail & Madsen, 2011; 
Royle, 2004). However, estimates of demographic rates from such 
models may not always be reliable (Barker, Schofield, Link, & Sauer, 
2018; Dennis, Morgan, & Ridout, 2015; Zipkin et al., 2014). Capture-
mark-recapture (CMR) data provide additional information for mod-
eling demographic rates, providing a more mechanistic link between 
population dynamics and climate than models based on occurrence 
or count data alone (Amburgey et al., 2018; Buckley et al., 2010; 
McMahon et al., 2011; Selwood, McGeoch, & Mac Nally, 2015). 
However, CMR data are less available and are relatively costly to ob-
tain across large spatial extents. Analyses that incorporate strengths 
of different data types and models have the potential to improve the 
inferences about population dynamics.

Integrated population models (IPMs) provide a formal framework 
for jointly modeling independent count and CMR data (Besbeas, 
Freeman, Morgan, & Catchpole, 2002; Hostetler, Sillett, & Marra, 
2015; Schaub & Abadi, 2011) along with climate predictors of demo-
graphic rates (Zipkin & Saunders, 2018). With one recent exception 
(Zhao, Boomer, & Royle, 2019), IPMs that have included climate co-
variates of demographic rates have been limited to population stud-
ies across relatively small spatial extents (Woodworth, Wheelwright, 
Newman, Schaub, & Norris, 2017) or have modeled multiple local 
populations independently (Weegman, Arnold, Dawson, Winkler, & 
Clark, 2017). Data from long-running national and continental scale 
avian monitoring programs (Dunn et al., 2005; Gregory et al., 2005; 
Robinson, Julliard, & Saracco, 2009; Sauer & Link, 2011) present 
a unique opportunity for extending IPMs to broad-scale applica-
tions. However, development and application of IPMs for broad-
scale bird-monitoring data are challenging because of a variety of 
sampling issues, including mismatches in sizes and spatio-temporal 
distribution of sampling areas between monitoring data sets and 
properly accounting for observation error associated with multi-site, 
multi-observer studies (Ahrestani, Saracco, Sauer, Royle, & Pardieck, 
2017; Robinson, Morrison, & Baillie, 2014). Additionally, IPMs de-
veloped for local scale studies based on binomial and Poisson pop-
ulation processes may not be appropriate at regional scales where 
population responses represent averages of local studies (Zhao et 
al., 2019).

Analyses of broad-scale IPMs require spatial stratification at 
ecologically relevant scales. Stratification decisions may involve geo-
political boundaries that are meaningful in conservation applications 

(e.g., state × bird conservation region; Sauer & Link, 2011). One ap-
proach would be to stratify on as fine of a resolution as possible and 
model spatial structure explicitly (Bled, Sauer, Pardieck, Doherty, 
& Royle, 2013; Saracco, Royle, DeSante, & Gardner, 2010). This 
approach offers the advantage of allowing poststratification sum-
maries across any larger spatial resolution of interest but can be com-
putationally expensive. Alternatively, stratification may be based on 
natural spatial structuring of population dynamics (Rushing, Ryder, 
Scarpignato, Saracco, & Marra, 2016) or genetics (Ruegg, Harrigan, 
Saracco, Smith, & Taylor, unpublished data; Ruegg et al., 2014). 
Spatial structuring of migratory species may be maintained (strong 
migratory connectivity) or dissolved (weak connectivity) between 
breeding and nonbreeding seasons. Effectively linking environmen-
tal covariates to demography in these species requires understand-
ing of spatial structuring throughout the annual cycle (Cohen et al., 
2018; Hostetler et al., 2015; Ruegg et al., 2014) and consideration 
of potential “carry-over effects,” whereby environmental conditions 
experienced in one season affect demographic rates and population 
changes in a subsequent season (Norris & Marra, 2007).

Here, we develop an IPM for data from the North American 
Breeding Bird Survey (BBS; Pardieck, Ziolkowski, Hudson, & 
Campbell, 2016) and the Monitoring Avian Productivity and 
Survivorship program (MAPS; DeSante & Kaschube, 2009) to as-
sess potential climate impacts on demographic rates and popu-
lation dynamics of a migratory songbird species, Wilson's warbler 
(Cardellina pusilla), within three distinct genetic regions of the west-
ern United States (Ruegg et al., 2014). Wilson's warbler (Figure 1) 
is a good candidate for development of a climate-informed IPM, as 
it is well-represented in BBS and MAPS data sets in the western 
United States; its patterns of migratory connectivity are relatively 
well understood (Ruegg et al., 2014); its population has declined 
in recent decades (Sauer et al., 2017); and it has been designated 
as an “at-risk” species due to climate change (http://clima te.audub 
on.org/birds ). We included remote sensed and modeled climate 
covariates in models of demographic rates. We hypothesized that 

F I G U R E  1   Adult male Wilson's warbler in California's Sierra 
Nevada. Photography credit: Gabriel Gonzalez

http://climate.audubon.org/birds
http://climate.audubon.org/birds
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breeding productivity would depend on drought conditions on the 
wintering grounds (a carry-over effect) and on spring temperature 
(Saracco, Siegel, Helton, Stock, & DeSante, 2019; Socolar, Epanchin, 
Beissinger, & Tingley, 2017) and that adult survival would depend on 
winter drought and wind conditions during spring migration (Drake, 
Rock, Quinlan, Martin, & Green, 2014; Huang, Bishop, McKibbin, 
Drake, & Green, 2017; LaManna, George, Saracco, Nott, & DeSante, 
2012). We used transient life table response experiments (LTREs) 
to decompose variation in population growth rates among vital rate 
and demographic structure components and to examine how these 
demographic contributions depended on climate covariates (Koons, 
Arnold, & Schaub, 2017; Koons, Iles, Schaub, & Caswell, 2016).

2  | METHODS

2.1 | Bird-monitoring data and focal species

Our analysis incorporates annual counts of adult birds from the BBS 
and capture-recapture data on adult birds and age-specific capture 
data from the MAPS program. The BBS is a roadside bird survey estab-
lished in 1966 that provides data on the status and population trends 
of >420 bird species (Sauer & Link, 2011; Sauer et al., 2017); it is a core 
component of North American bird conservation efforts (Rosenberg 
et al., 2016). The MAPS program, established in 1989 and standard-
ized in 1992, uses data from a cooperative network of mist-netting 
and bird-banding stations to provide information on demographic 
rates of >100 landbird species (DeSante & Kaschube, 2009). Here, we 
analyze MAPS and BBS data for Wilson's warbler stratified by three 
genetically distinct breeding regions that overwinter in northwestern 
Mexico (Ruegg et al., 2014; Figure 2; Table 1). Although MAPS and 
BBS data were available from additional genetic breeding regions, we 
limited our analysis to just these three regions because other breeding 
populations regularly utilize wintering ranges farther south than our 
climate covariate data set extended (Wang, Hamann, Spittlehouse, & 
Carroll, 2016; Wang, Hamann, Spittlehouse, & Murdock, 2012). For 
illustration of our model, we limit the time window of our analysis to 
the 17 years 1992–2008 based on the earliest year and latest years of 
vetted MAPS data available when the analysis was undertaken (up-
dated verified MAPS data base expected in 2020).

2.2 | Climate data

We calculated overwintering and breeding season climate covari-
ates from the ClimateNA database (https ://sites.ualbe rta.ca/~ahama 
nn/data/clima tena.html). ClimateNA uses bilinear interpolation of 
monthly gridded climate data (Daly et al., 2008; Hutchinson, 1989) 
and local elevation adjustments to provide climate metrics for indi-
vidual points (Wang et al., 2016, 2012). An advantage of using this 
data set is the availability of interpolated values for fine spatial reso-
lution and projected climate estimates for future time periods to as-
sess population viability under climate change scenarios.

2.2.1 | Overwintering season

Drought associated with the dry season may limit vital rates of 
birds overwintering in western Mexico (LaManna et al., 2012; Nott, 
Desante, Siegel, & Pyle, 2002); and winter drought conditions in this 
region are expected to become more severe in the coming decades 
(IPCC, 2014). To characterize annual winter drought conditions, we 
used Hargreave's Climate Moisture Deficit (cmd), a derived variable 
calculated as the monthly summed difference between atmospheric 
evaporative demand (Hargreaves & Samani, 1982) and precipitation. 
We extracted winter (December–February) cmd values for 10,000 
random points across the winter range for 1992–2008 and for “nor-
mal” (i.e., mean) values for 1961–1990. We then calculated the de-
viation of the annual value from the normal value to derive a cmd 
anomaly (cmd) for inclusion in the analysis. For birds that breed in 
the coastal California region (cca), we used cmd values from both the 

F I G U R E  2   Breeding Bird Survey (BBS) routes (squares) and 
MAPS stations (circles) sampled between 1992 and 2008 where 
Wilson's warbler was detected or captured. The three genetically 
distinct breeding regions (Ruegg et al., 2014) included the Pacific 
Northwest (pnw; purple), coastal California (cca; blue), and the 
Sierra Nevada (sne; orange). Birds of all three breeding regions 
winter in northwest Mexico (blue), although migratory connectivity 
data suggest that only the cca breeding region includes the 
southern Baja California portion of the wintering range. Points for 
which spring migration wind data were used are shown for each 
breeding region (purple circles for pne; green ×'s for cca; orange +'s 
for sne)

https://sites.ualberta.ca/~ahamann/data/climatena.html
https://sites.ualberta.ca/~ahamann/data/climatena.html
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Baja California and western Mexico portions of the overwintering 
regions, based on evidence that birds from this breeding region use 
both of these areas nearly equally during the nonbreeding season 
(Ruegg et al., unpublished data). For the remaining two breeding re-
gions, we used only cmd values from western Mexico, as birds from 
these two regions do not appear to use (or use minimally) the Baja 
California portion of the overwintering range.

2.2.2 | Breeding season

We calculated mean spring (February–May) temperature (temp) within 
each of the breeding regions from averaged ClimateNA values from 
1,000 random points sampled within each breeding region. Temperature 

covariates were among the top explanatory variables in models of pro-
jected changes in the distribution of Wilson's warbler under climate 
change (C. Wilsey and N. Michel, pers. comm.), and spring temperature 
in particular may affect snowmelt, green-up, and food availability during 
the nesting season, which can affect timing of breeding and productiv-
ity (Saracco et al., 2019). As with the drought covariate, we subtracted 
the annual spring temperature values from 1961 to 1990 normal values 
to derive the covariate used in the analysis described below.

2.2.3 | Spring migration

Spring wind conditions may be an important factor affecting sur-
vival rates of western Neotropical migrant songbirds (Drake et al., 

TA B L E  1   Summary of the BBS and MAPS data sets used in the integrated population model

Region

BBS data MAPS age-specific capture data MAPS adult CMR data

No. routes Birds/route No. stations No. juvs. No. adults No. stations No. inds. No. recaps.

Pacific 
Northwest 
(pnw)

148 8.07 105 1,919 5,152 66 3,781 483

Sierra Nevada 
(sne)

58 0.89 43 982 3,826 26 2,595 408

Coastal 
California (cca)

21 13.15 29 2,424 2,449 15 4,424 401

Note: The MAPS adult CMR data set was restricted to stations operated ≥4 years.

F I G U R E  3   Graphical representation of the hierarchical model that integrates North American Breeding Bird Survey (BBS) and Monitoring 
Avian Productivity and Survivorship (MAPS) data and includes climate covariates of vital rates. The overall model can be characterized 
by three sub-models: (1) a state-space model for the BBS count data (solid blue); (2) a state-space Cormack-Jolly-Seber (SS CJS) model 
for MAPS capture-recapture data of adult birds (left; dashed red); and (3) a binomial model of productivity based on age-specific MAPS 
capture data (right; dotted yellow). Additional parameters and hyperparameters accounting for spatial and temporal variation in model 
components are not shown. Data inputs are represented by open rectangles (y = BBS counts; r = MAPS observed residency; c = MAPS adult 
capture histories; HY = number of young [hatching year] captures; Nind = number of captures; cmd = winter drought index; tw = tailwind; 
temp = spring temperature). State variables are represented by shaded rectangles (R = residency state; z = alive state; s = number of 
survivors; g = number of recruits; n = s + g). Parameters associated with observation processes of state-space models (i.e., “nuisance” 
parameters) are represented by open circles (p = recapture probability; ρ = observed residency probability. Estimated population parameters 
are represented by shaded circles. Residency probability, π, and the productivity index, RI, are shaded to match sub-models informing 
them. Adult survival probability, ϕ and recruitment, � are shaded intermediate colors to highlight their dependence on information shared 
between sub-models. Stochastic relationships (i.e., model likelihoods) are represented by solid arrows. Climate covariate (cmd, tw, and temp) 
relationships are shown as dashed arrows. First-year survival/immigration, ι, is a latent parameter (black/gray) not directly informed by the 
monitoring data. See Section 2.3 for detail
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2014; Huang et al., 2017). We calculated a covariate representing 
average tailwind conditions experienced during spring migration 
for each overwintering-breeding region connection. We used the 
RNCEP package in R to extract and process 2.5-degree grid U- and 
V-wind vector data from the National Centers for Environmental 
Prediction (NCEP)/National Center for Atmospheric Research 
(NCAR) Reanalysis data set (Kalnay et al., 1996). We averaged 6-hr 
wind vector data, excluding 12:00 p.m. values (when migrating 
songbirds are normally sedentary) at two atmospheric levels rep-
resentative of altitudes typically used by migrating songbirds (800 
and 950 mb). For grid points linking each breeding-wintering region 
(Figure 2), we calculated an average tailwind covariate (tw) for the 
spring migration period (7 Mar–21 April for cca; 1 April–31 May for 
sne and pnw) using the NCEP.Tailwind function in RNCEP based 
on bearings representing centroids of breeding and winter ranges 
(Kemp et al., 2012).

2.3 | Model development and implementation

Our overall model was comprised of three basic components 
(Figure 2): (a) A state-space model for the observed BBS counts 
and population dynamics; (b) a state-space transient Cormack-Jolly-
Seber model applied to MAPS capture histories for adult birds to in-
form adult survival probabilities; and (c) a model for the recruitment 
process, partially informed by a binomial model applied to age-struc-
tured MAPS capture data (Figure 3). Data and code for implement-
ing the model and reproducing results are available at https ://doi.
org/10.21429/ 04ma-p963.

2.3.1 | Count model for BBS data

At the core of the IPM is a state-space model for the count data (solid 
blue box in Figure 3). We modeled the counts, y, from i in 1, …, Nro 
BBS route × observer combinations; m in 1, …, M = 3 strata (where 
strata represent the smallest common scale of inference for the two 
data sets); and t in 1992, …, T = 2008 years according to an overdis-
persed Poisson distribution: yi,m,t∼Pois

(
�y(i,m,t)

)
. We modeled count 

means as a function of an annual stratum-level population size index 
nm,t, and effects accounting for observer/route and overdispersion 
effects (Ahrestani et al., 2017):

Following Link and Sauer (2002), the ω i represents a random 
observer × route effect, with precision hyperparameter τω (where 
� =1

/
�2
�
); η represents a fixed novice observer effect (start-up-

year effect) multiplied by an indicator variable I(i,t), where 
I(i,t) = 1 for the first year an observer completes a survey on a 
route and I(i,t) = 0 on other years; and �i,m,t is an error term allow-
ing for extra binomial variation (overdispersion) with precision 
hyperparameter τε.

We modeled nm,t at each time step as the sum of surviving adults 
from the previous year, sm,t and the number of recruits (local re-
cruits + immigrants) entering the population between years, gm,t. For 
the initial time step (t = 1992), numbers of survivors and recruits 
were determined mainly by the count data and (weakly informative; 
see below) prior distributions. We modeled sm,t and gm,t at subse-
quent time steps based on Gaussian approximations of binomial and 
Poisson distributions, respectively (Zhao et al., 2019):

This parameterization provides a natural extension of IPMs for 
continuous data, whereby population dynamics are described by 
a shape parameter representing the previous year's population 
state and vital rate parameters representing net demographic 
losses and gains. The vital rate parameter in the survival mean 
model, �m,t, is the adult apparent survival probability derived 
from a model of MAPS CMR data; and the �m,t parameter in the 
recruitment mean model is a composite parameter that includes a 
mixture of fecundity, first-year survival, and immigration compo-
nents (models for vital rate parameters described in detail below). 
Interpretation of �m,t should also be cautioned by acknowledge-
ment that this parameter may also absorb unexplained variation 
representing discrepancies in the sampling process between data 
sets. We decomposed �m,t into a productivity component derived 
from age-specific MAPS data, RIm,t, and a latent parameter, ιm,t, 
which reflects variation in first-year survival and immigration (i.e., 
local and external “recruits” of any age; DeSante, Kaschube, & 
Saracco, 2015), based on �m,t=RIm,t× �m,t.

We derived regional-scale route-level abundance indices as:

where the wm are weights representing the proportion of BBS routes 
on which Wilson's warblers were encountered in the region and the �2

�i
 

and �2
�i,m,t

 are variance components of route × observer and overdisper-
sion effects (Sauer & Link, 2011). We calculated regional population 
trends as geometric means of the annual realized population growth 
rates (Nm,t+1

/
Nm,t). For composite abundance and trend estimates, we 

weighted regional abundances by proportions of area encompassed by 
regions (Link & Sauer, 2002).

The stratum- and year-specific adult survival probabilities, �m,t 
(Equation 1), were informed by individual encounter history data 
from the MAPS program modeled using a state-space version of 
the Cormack-Jolly Seber model that accounts for transients (i.e., 
individuals with zero probability of recapture after the year of 
marking; Pradel, Hines, Lebreton, & Nichols, 1997) in the data 
set (Saracco et al., 2010; dashed red box in Figure 3). The model 
assumes that the “alive state,” z, of individual j in stratum m and 
time t is a Bernoulli process with the probability parameter equal 

log
(
�i,m,t

)
= log

(
nm,t

)
+�i+� (i,t)+�i,m,t

sm,t∼Norm ∣ +∞
0

(
nm,t−1×�m,t−1,nm,t−1×�m,t−1×

(
1−�m,t−1

))

and

gm,t∼Norm ∣ +∞
0

(
nm,t−1×�m,t−1,nm,t−1×�m,t−1

)

Nm,t=wm×exp
(
log (nm,t)+0.5×�2

�i
+0.5×�2

�i,m,t

)

https://doi.org/10.21429/04ma-p963
https://doi.org/10.21429/04ma-p963


     |  1809SARACCO And RUBEnSTEIn

to the product of the individual's residency state, R (0 = tran-
sient; 1 = resident), its alive state in time t − 1 (0 = dead or per-
manently emigrated; 1 = alive and available for capture), and the 
apparent survival rate: zj,m,t ∣ zj,m,t−1∼Bern

(
Rj,m,t−1zj,m,t−1�m,t−1

)
. We 

modeled residency state of newly marked individuals based on a 
Bernoulli distribution with residency probability parameter, �m,t:  
Rj,m,t∼Bern

(
�m,first(j)

)
, where first( j) indicates the year of marking for 

individual j.
We defined a logit-linear model for �m,t that allowed survival 

to vary as a function of a stratum-specific mean on logit scale 
(logit(�0[m])), the winter drought index, cmdm,t, the tailwind covari-
ate, twm,t, and a zero-mean random stratum-specific year effect, 
�m,t:

We defined an analogous logit-linear model for �m,t with the 
exception that we did not include the climate covariates. For the 
stratum-specific year effects in both models, we allowed precision 
hyperparameters to be stratum-specific.

We also developed models for the observation components of 
the MAPS CJS model. We modeled captures, cj,k,m,t at k = 1,…, K sta-
tions as a function of the true alive state and recapture probability, pk: 
cj,k,m,t∼Bern

(
zj,m,tpk

)
; and observations of predetermined residency 

status, rj,k,m,t, as a function of the true residency state, Rj,k,m,first( j), and 
the predetermined residency probability, ρk: rj,k,m,first(j)∼Bern

(
Rj,m,t�k

)
.  

Predetermined residency was based on multiple within-season cap-
tures ≥10 days apart in the year of marking (r = 1 indicating observed 
residents; r = 0 for unknown residency status). We defined logit-lin-
ear models for pk and ρk that included intercepts and zero-mean ran-
dom station effects.

The reproductive index included in the recruitment component of 
the population process model was based on a binomial model applied 
to age-specific MAPS capture data (dotted yellow box in Figure 3). 
Specifically, we modeled the number of young (hatching year) birds 
captured, HYk,m,t, according to HYk,m,t∼Binom(pHYk,m,t,Nindk,m,t), 
where pHYk,m,t represents the probability of capturing a young bird 
and Nindk,m,t represents the total number of individual birds cap-
tured at station k in region m and year t. We defined a logit-linear 
model for pHYj,m,t as:

where the �0[m] are fixed stratum-specific intercepts; �ef is the co-
efficient for an effort covariate, efm,t; �cmd is the coefficient for the 
region-specific carry-over effect of winter drought (cmdt) on produc-
tivity; the �temp[m] are the region-specific effects of spring tempera-
ture (tempm,t) on productivity; and the yrm,t and stak are zero mean 
region × year and station effects, respectively. The efs,t covariate was 
calculated as a ratio representing summed effort across MAPS banding 
sessions when young birds were captured relative to summed effort 
during sessions when adults were captured. Effort totals for young and 

adult capture sessions were weighted by regional totals for each age 
class across years, such that effort completed during MAPS sessions 
of peak captures counted more than MAPS effort during periods of 
fewer captures. We then derived the index of region- and year-specific 
postfledging productivity, RIm,t, on a per-capita scale (young/adult) as: 
RIm,t=exp (�0[m]+�cmd[m] ×cmdm,t+�temp[m] × tempm,t+yrm,t)

Assuming independence among data sets, the likelihood of the 
IPM, LIPM, can be defined as the product of the likelihoods of the 
three-component models, including the state-space count model, 
LSS, the state-space CJS model, LCJS, and the binomial model for 
the age-specific capture data, LProd (Figure 3). The likelihood of the 
state-space count model, LSS, can be defined as the product of like-
lihoods for the observation (LO) and system (LS) process models: 
LSS

(
y|n,�,�,�,�,RI,�

)
=LO (y|n,�,�,�)×LS

(
n|�,RI,�

)
; the likelihood for 

the CJS model (LCJS) can be defined as: LCJS
(
c,r| z,R,�,�,p,�,�cmd ,�tw

)
;  

and the likelihood for the binomial productivity model can be de-
fined as LPr od(HY|Nind,�0,�ef,�cmd,�temp,yr,sta).

We implemented the model with JAGS 3.3.0 (Plummer, 2003) 
using the jags function of the jagsUI package (Kellner, 2015) in the 
R statistical computing environment (R Core Team, 2018). We as-
signed vague uniform U(0, 1) prior distributions for inverse-logit 
transformed intercepts of models for parameters on 0–1 proba-
bility scales. Regression coefficients for fixed effects of linear 
models were modeled with Norm(0, 10–3) priors, and standard 
deviation hyperparameters were modeled with U(0, 10) priors. 
We inferred support for vital rate-covariate relationships for re-
gression coefficients with 95% credible intervals that did not 
overlap zero. The first-year survival/immigration parameter, ιm,t, 
was determined based on a weakly informative prior distribution, 
�∼Norm(1,100). This prior ensured only a plausible range of val-
ues for this parameter with prior mean consistent with results of 
previous MAPS analyses (DeSante et al., 2015). Posterior distri-
butions of the demographic parameters and population size were 
derived from 80,000 simulated values of four chains from the pos-
terior distribution after an adaptive phase of 40,000 iterations and 
burn-in of 20,000 samples of the Gibbs sampler and thinning by 
4. The Markov chains were determined to have successfully con-
verged if R̂ values were <1.1 for posterior estimates of all parame-
ters (Gelman & Hill, 2006). We present all parameter estimates as 
means ± 95% credible intervals.

2.4 | Demographic contributions to variation in 
population change

We used transient life table response experiments (LTREs) to de-
compose temporal variation in population growth rates among vital 
rate and demographic structure components (Koons et al., 2017, 
2016). Specifically, we considered contributions of adult apparent 
survival, ϕ; productivity (of both new recruits/immigrants and sur-
vivors from previous time step), RI; first-year survival/recruitment, ι.  
Following Koons et al. (2017), we also considered contributions of 
demographic age structure; however, as in that study, we found that 

logit
(
�m,t

)
= logit

(
�0[m]

)
+�cmd[m] ×cmdm,t+�tw[m] ×twm,t+�m,t

logit
(
pHYk,m,t

)
=�0[m] +�ef×efm,t+�cmd[m] ×cmdm,t+�temp[m]×

tempm,t+yrm,t+stak
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age structure contributed virtually nothing to explaining variation 
in population growth. Thus, we do not report those results here. 
Finally, we examined annual changes in population growth rate in 
relation to changes in climate covariates to better understand how 
climate variation drives population dynamics.

3  | RESULTS

3.1 | Population status, trends, and vital rate 
dynamics

Area-weighted estimates of our population size index, suggest that 
the a pnw population [N̂ = 10.26 (6.35, 15.88)] is about 9 × larger 
than the cca population [N̂ = 1.19 (0.55, 2.27)], and 20 × larger than 
the sne [N̂ = 0.53 (0.25, 0.98)] population. We estimate that the three 
Wilson's warbler genetic groups have declined overall by an aver-
age of 2.1%/year (−3.3%, −0.9%) over the 17-year (1992–2007) study 
period [where trend = 100 × (�̂� − 1)]. This trend was largely driven 
by the relatively large pnw group, which declined by about 2.5%/
year (−3.9%, −1.8%). The cca group declined less severely [−0.7%/
year (−3.3%, +1.9%)], while the sne population showed evidence of 
positive population trend [+2.3%/year (−1.6%, +6.4%)]. Annual popu-
lation growth rate estimates (�̂�) were variable for the sne population 
(although precision was low) compared with the other two genetic 
groups (Figure 4).

Mean adult apparent survival rates were slightly higher for the 
California populations [0.50 (0.42, 0.58) for sne; 0.49 (0.42, 0.57) for 
cca] than for the Pacific Northwest [0.45 (0.41, 0.49)]. Adult survival 
was relatively stable and showed similar levels of annual variability 
across regions (mean �̂�𝜈 ranging from 0.16 to 0.17; Figure 4). Point 
estimates of mean recruitment (�̂�) were lower for the sne population 
[0.28 (0.01, 0.94)] than for the other two groups [0.48 (0.02, 1.40) 
for cca; 0.44 (0.02, 1.21) for pnw]; however, precision was low for all 
recruitment estimates (Figure 4). Mean productivity was lower for 
sne [0.10 (0.06, 0.17)] than for cca [0.23 (0.13, 0.39)] or pnw [0.21 
(0.15, 0.29)]. Productivity was variable among years for all regions, 
albeit less so for pnw [�̂�yr = 0.25 (0.15, 0.41)] compared with the 
other two regions [�̂�yr = 0.40 (0.25, 0.63) for cca and �̂�yr = 0.42 (0.26, 
0.66) for sne].

3.2 | Climate covariate relationships

Adult apparent survival was negatively related to winter drought 
for the two California genetic groups for (Table 2, Figure 5a), but 
not for the pnw group (Table 2). We found no relationship be-
tween tailwind and adult apparent survival (Table 2). We found 
no evidence of a carry-over effect of winter drought effect on 
productivity [�̂�cmd = 0.01 (−0.12, 0.13)]. Spring temperature was 
only weakly related to productivity for the cca group (Table 2); 
this relationship was much stronger for the sne and pnw groups 
(Table 2; Figure 5b).

3.3 | Demographic and climatic contributions to 
population growth

Annual changes in population growth rates were driven principally 
by recruitment components (RI and � ), rather than by changes in 
adult apparent survival (Figure 6). Our index of first-year (HY) sur-
vival, � , had the largest effect on annual population changes for all 
three populations.

We found relatively little evidence of a relationship between win-
ter drought conditions and population change for the two California 
populations (Figure 7a,c). Nevertheless, differences in drought con-
ditions between years did appear to be related to differences in pop-
ulation growth between years (Figure 7b,d). For example, transitions 
between severe drought conditions in winter 1993–1994 to more 
normal conditions in winter 1994–1995 corresponded to a notice-
able increase in survival between the 1993 and 1994 survival inter-
vals for the cca and sne regions and a significant population increase 
in the sne region during that interval (Figure 4). Return to drought 
conditions the following year was marked by survival declines in all 
three genetic groups.

Contributions of annual changes in spring temperature to annual 
changes in population growth rate were relatively large for the sne 
(Figure 7e,f) and pnw (Figure 7g,h) populations. Declines in spring 
temperature between years of ~<1°C tended to be associated with 
negative contributions to changes in population growth, while pos-
itive changes in population growth (at least up to ~1°C) tended to 
be associated with positive contributions to changes in population 
growth (Figure 7f,h).

4  | DISCUSSION

Integrated population models have gained wide usage in popula-
tion ecology because they provide a cohesive framework for un-
derstanding demographic and environmental drivers of population 
change (Koons et al., 2017; Schaub & Abadi, 2011). However, these 
models have received little attention in applications that combine 
multiple independent surveys across broad spatial and temporal 
scales (Ahrestani et al., 2017; Robinson et al., 2014; Zhao, Boomer, 
& Kendall, 2018). The IPM presented here provides a flexible 
framework for these broad-scale multi-site applications by mod-
eling the survival and recruitment processes as functions of con-
tinuous random variables, rather than as functions of binomial and 
poisson processes typical of most IPM applications. We follow 
Brintz, Fuentes, and Madsen (2018) and Zhao et al. (2019) by mod-
eling the demographic processes based on a Gaussian approxima-
tions of binomial and Poisson models. Another option that we have 
found yielded similar results was to use gamma distributions with 
shape parameters determined by population state and rate param-
eters determined by the demographic rates. These approaches for 
continuous data provide a natural means of linking count and CMR 
data collected at different collections of sites at common regional 
scales. Use of discrete models in these situations (Ahrestani et al., 
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2017) can be problematic when average population counts are low 
for a region (e.g., at the periphery of the range as in our cca and 
sne regions) and susceptible to extinction. In this discrete model 
scenario, a separate immigration parameter would be needed to 
allow for regional recovery (Abadi, Gimenez, Ullrich, Arlettaz, & 
Schaub, 2010; Hostetler & Chandler, 2015; Schaub & Fletcher, 
2015; Schaub, Jakober, & Stauber, 2013). However, as in our ap-
plication, scales of local and external recruitment are not always 
clear, and introducing this parameter creates additional latency 
that can complicate or preclude reliable estimation. Given already 
low precision of estimates for many of the fully time-specific pa-
rameters in our model, particularly for the sne and cca populations 

for which we had relatively few data, it would be difficult to justify 
this additional complication.

Despite low precision of recruitment estimates, our results sug-
gested that greater variation in productivity and recruitment than 
in adult survival, and that recruitment played a much larger role in 
explaining annual variation in population change than did adult sur-
vival. These findings are likely due, in part, to discrepancies between 
MAPS and BBS data sets, which differ in sizes and spatio-temporal 
distribution of sampling units. Thus, ecological interpretation of the 
recruitment component of our model must be tempered due to in-
clusion of error associated with discrepancies in the sampling pro-
cesses between data sets (Riecke, Leach, Gibson, & Sedinger, 2018). 

F I G U R E  4   Annual estimates of abundance and demographic rates (means ± 95% credible intervals) for each Wilson's warbler population

 
Pacific Northwest 
(pne) Sierra Nevada (sne)

Coastal California 
(cca)

Adult apparent survival (ϕ)

Winter drought (𝛽cmd) 0.00 (−0.17, 0.19) −0.17 (−0.38, 0.02) −0.23 (−0.45, 0.00)

Tailwind (𝛽tw) −0.06 (−0.38, 0.27) 0.03 (−0.23, 0.30) 0.04 (−0.19, 0.26)

Productivity (RI)

Winter drought (�̂�cmd) −0.01 (−0.20, 0.16) 0.11 (−0.15, 0.36) −0.08 (−0.38, 0.20)

Spring temperature 
(�̂�temp)

0.28 (0.09, 0.48) 0.26 (0.03, 0.51) 0.06 (−0.20, 0.31)

TA B L E  2   Mean (95% credible interval) 
coefficient estimates from logit-linear 
models indicating vital rate-covariate 
relationships for the three Wilson's 
warbler genetic groups
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Alternative models for the capture-recapture data, such as Jolly 
Seber (JS) models (Link & Barker, 2005; Royle & Dorazio, 2008) could 
be incorporated to inform recruitment directly. However, we have 
found these models impractical with large data sets due to long com-
putation times, especially whenever capture probabilities are low (as 
in our example) because of the necessary addition of large numbers 
of additional all-zero capture histories. Reverse-symmetry models 
based on site-level data summaries could also be used (Pradel, 1996; 
Tenan et al., 2014); however, we have encountered long implemen-
tation times with these models and difficulty achieving convergence 
when there are large numbers of missing site × year combinations. 
Furthermore, both of these solutions require modification to ac-
count for transiency, which is not straightforward in the context of 
JS or reverse-symmetry models. Despite having little direct infor-
mation on recruitment in our model and imprecise estimates of the 

first-year survival/immigration component of recruitment (ι), our 
results implicating the importance of recruitment in explaining tem-
poral variation in population growth rates are consistent with results 
of analyses based on MAPS data alone for a variety of bird species, 
including Wilson's warbler (DeSante et al., 2015; Wilson et al., 2018).

We linked demographic parameters to climate covariates that 
will be impacted by climate change. Spring winds have been shown 
to affect survival in other passerine birds (Drake et al., 2014; Huang 
et al., 2017); however, we found no evidence of spring wind effects 
on these three Wilson's warbler groups. It is possible that our wind 
covariate did not properly capture migration conditions due to how 
migration regions were delineated or that mean tailwind conditions 
across the entire migration period was not an appropriate metric. 
However, similar measures, such as number of days with positive 
tailwind, were strongly correlated with mean tailwind, suggesting 
that, if wind were an important predictor of survival, we might have 
detected it. It should be noted, however, that across our study re-
gions, spring tailwinds tend to be negative (i.e., they are headwinds), 
particularly along the coast. Because of increased coastal upwelling, 
these winds are predicted to become more negative (i.e., stronger 
northerly) under climate change (Sydeman et al., 2014), which will 
likely exacerbate the potential for a negative effects of headwinds 
on survival in the coming decades. We did find significant negative 
effects of winter drought conditions on adult apparent survival for 
the California populations. It is possible that drought conditions 
typical of late summers in California (prior to fall migration) could 
leave these populations more vulnerable to drought on their win-
tering grounds than populations of the Pacific Northwest that do 
not normally experience pronounced late summer drought. Average 

F I G U R E  5   Estimated relationships between demographic 
parameters and climate covariates (means ± 95% credible intervals). 
(a) adult apparent survival probability declined with increasing 
drought anomaly for the Sierra Nevada (sne) and coastal California 
(cca) populations; and (b) productivity increased as a function of 
spring temperature anomaly for the sne and Pacific Northwest 
(pnw) populations

F I G U R E  6   Demographic contributions to variation in population 
growth rate (means ± 95% credible intervals). The pnw population 
(left) is represented by blue squares, the sna population (middle) 
by orange circles, and the cca population (right) by green triangles. 
Recruitment parameters (RI and � ; gray region) contributed 
substantially more to explaining annual variation than did adult 
survival (�; white region)
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drought conditions are expected to worsen in western Mexico under 
climate change scenarios, where these genetic groups of Wilson's 
warbler overwinter (Trenberth et al., 2013). Although our results 
suggested that adult apparent survival contributed less to overall 
population trends than recruitment, conserving and managing for 
drought-resilience habitats will nevertheless likely be an important 
component of any conservation plan for these populations.

Our analysis incorporated age-specific capture data to model 
postfledging productivity, which allows assessment of relative con-
tributions of reproductive output and first-year survival and immi-
gration to recruitment and population change. Although we found 
no evidence of winter drought carry-over effects on productivity, 
we did find population-specific effects of spring temperature on 
productivity: Productivity of populations in the montane (sne) and 
northerly (pnw) regions increased with increasing spring tempera-
ture. This finding is consistent with results of multi-species produc-
tivity models applied to MAPS data within the sne region (Saracco 
et al., 2019). Productivity was an important contributor to annual 

variation in population change. For the sne and pnw populations, 
negative changes in spring temperatures between years tended to 
result in negative contributions to between-year changes in popu-
lation growth, while years with increases in temperature over the 
previous year tended to yield positive contributions of productivity 
to changes in population growth. It should be noted, however, that 
there was some indication that positive temperature effects de-
clined at larger between-year spring temperature increases (~>1°C 
increases), which may have implications under an increasingly vari-
able and warming environment.

Large-scale multi-site surveys have long played an important role 
in advancing ecology and conservation (Buckland, Magurran, Green, 
& Fewster, 2005; Magurran et al., 2016). Continued development of 
IPMs that combine large-scale data sets of marked individuals with 
structured (e.g., BBS) or unstructured (e.g., eBird; Robinson et al., 
2018) observational data should lend powerful new insights into the 
status and trends of populations as they encounter novel environ-
ments associated with recent habitat and climate change (Butchart 

F I G U R E  7   Annual population growth 
rates v. covariates that influenced 
vital rates (a, c, e) and contributions of 
demographic parameters to changes in 
population growth rates v. annual changes 
in climate covariate values (b, d, f). Points 
represent means and error bars delineate 
95% credible intervals
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et al., 2010; Tittensor et al., 2014). Although we do not explore pre-
dictions of future populations here, by extending the time series 
of our model into the future, extinction risk for each of the genetic 
groups could be assessed based on predicted time series of future 
climate covariate values and estimates of mean demographic rates 
and demographic stochasticity (our hierarchical region-specific esti-
mates of annual variation). Such analyses could assist in weighing the 
potential effectiveness of various conservation actions in the con-
text of environmental trends and variation (Boyce, Haridas, Lee, & 
The NCEAS Stochastic Demography Working Group, 2006; Lawson, 
Vindenes, Bailey, & van de Pol, 2015) and alternative conservation 
priorities (e.g., conservation of rare genetic lineages v. conservation 
of the most individuals; Ruegg et al., unpublished data).
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