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Summary

1. A common sampling design in resource selection studies involves measuring resource atiri-
butes at sample units used by an animal and at sample units considered available for use.
Few models can estimate the absolute probability of using a sample unit from such data, but
such approaches are generally preferred over statistical methods that estimate a relative prob-
ability of use.

2. The case—control model that allows for contaminated controls, proposed by Lancaster &
Imbens (1996) and Lele (2009), can estimate the absolute probability of using a sample unit
from use-availability data. However, numerous misconceptions have likely prevented the
widespread application of this model to resource selection studies. We address common mis-
conceptions regarding the case—control model with contaminated controls and demonstrate
its ability to estimate the absolute probability of use, prevalence and parameters associated
with categorical covariates rom usc-availability data.

3. We fit the case—control model with contaminated controls to simulated data with varying
prevalence (defined as the average probability of use across all sample units) and sample sizes
(r; = 500 used and n, = 500 available samples; 7; = 1000 used and n, = 1000 available
samples). We then applied this model to estimate the probability Ozark hellbenders (Crypto-
branchus alleganiensis bishopi) would use a location within a stream as a [unction of covariates.
4. The case—control model with contaminated controls provided unbiased estimates of all
parameters at N = 2000 sample size simulation scenarios, particularly at low prevalence.
However, this model produced increasingly variable maximum likelihood estimates of param-
eters as prevalence increased, particularly at N = 1000 sample size scenarios. We thus recom-
mend at least 500-1000 used samples when fitting the case—control model with contaminated
controls to use-availability data. Our application to hellbender data revealed selection for
locations with coarse substrate that are close to potential sources of cover.

5. This study unites a disparate literature, addresses and clarifies many commonly held mis-
conceptions and demonstrates that the case—control model with contaminated controls is a
viable alternative for estimating the absolute probability of use from usc-availability data.
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Introduction

The study of resource selection is essential [or describing
relationships between animals and their environment,
understanding [actors that determine the distribution ol
species and managing wildlife populations. Resource
selection studies are olten motivated by a need to under-
stand what [lactors increase (or decrease) the probability
an animal will use a sample unit. A use-availability design
is a common sampling design in resource selection studies.
We deline ‘use’ as physical presence within a sample unit,
which is often used synonymously with the term ‘pres-
ence’. We deline ‘sample unit’ as the basic unit [rom
which data are collected. In a resource selection context,
sample units can range [rom trees a woodpecker may
forage on to resource patches of similar vegetation.

Under a use-availability sampling design, resource attri-
butes (denoted x) are recorded [rom a random set of sam-
ple units that were used by an animal (denoted z = 1),
and resource attributes are also recorded at a random set
ol sample units considered available to an animal. ‘Avail-
able’ sample units are synonymously called *background’
(Royle et al. 2012), ‘contaminated controls’ (Lancaster &
Imbens 1996) or ‘pseudo-absences’ (Phillips, Anderson &
Schapire 2006), though in practice it 1s unknown whether
such sample units were used. Although these data are
often relerred to as ‘use-availability’ data (sensu Manly
et al. 2002), some authors synonymously use the term
‘presence-only’ data. Estimating the absolute probability,
a sample unit is used (i.e. a resource selection probability
[unction; RSPF) [rom such data is dillicult because the
number ol used sample units is not proportional to the
occurrence of used sample units in the population of
interest.

A common solution to this problem is to treat available
sample units as il they were true absences. For example,
Manly et al. (2002, p. 100) advocate [itting a logistic
regression model to use-availability data. The resulting
parameter estimates can then be substituted into a log-
linear [unction that is assumed proportional to the
absolute probability of use:

Pr(z = 1l|x) oc exp(Byx1+, . .o, +P,%p).

This function is commonly referred to as a resource
selection [unction (RSF), because it is assumed propor-
tional to the absolute probability ol use. Machine learn-
ing algorithms such as Maxent (Phillips, Anderson &
Schapire 2006; Phillips & Dudik 2008) and Random
Forests (Cutler et al. 2007) are also commonly used to
RSFs Machine

learning methods [ocus primarily on maximizing predic-

construct [rom use-availability data.
tive capability (Elith ef al. 2006) rather than parametric
estimation and can estimate highly complex relations
between resource allributes and the relative probability
a sample unit is used. We note that while some ol the
techniques outlined above, such as Maxent, are [re-

quently relerred to as species distribution models, they
address problems identical to those encountered in
resource selection studies, namely what environmental
variables are associated with the spatial distributions of
species. For more detailed reviews ol RSFs (and species
distribution models), see Guisan & Zimmermann (2000),
Manly et al. (2002), Guisan & Thuiller (2005), and Pe-
arce & Boyce (2006). An important problem with treat-
ing available sample units as true absences is an
inability to estimate the absolute probability a sample
unit is used. The resulting RSF is assumed proportional
to the absolute probability ol use, though such propor-
tionality is not guaranteed (Keating & Cherry 2004;
Royle et al. 2012). Additionally, relative probabilities
may be meaningless il baseline probabilities are close to
0 or 1. For example, even i[ a sample unit is 5 times
more lkely to be used when a particular attribute is
present, il the baseline probability ol use is 0-0001, an
ammal 1s still highly unlikely to use that sample umnit.
Given the shortcomings described above, practitioners
tasked with wildlife management and ensuring biodiver-
sity should prefler to build RSPFs that produce unbiased
estimates ol the absolute probability a sample unit is
used. Recall that under a use-availability study design,
resource attributes, x, are recorded at a random set ol
used locations, z = 1. The central statistical problem is
then estimating Pr(x|z = 1). Applying Bayes rule, we get:

Pr(x|z=1) = eqn 1

Notice that the right-hand side ol equation 1 contains the
term Pr(z = 1|x). This can be modelled via the logit link
as:

logit(Pr(z = 1|x)) = fo + frx1 +--- + %,

and is the RSPF that is typically ol interest to practitioners.
Notice also that the denominator ol equation 1 denotes the
average probability any available sample unit is used, com-
monly relerred to as “prevalence’. This equation, and the
associated likelihood [unction, has been obtained by several
authors (Lele & Keim 2006; Dorazio 2012; Royle et al.
2012). Maximizing the likelihood [unction with respect to
the parameters involves approximating Pr(z = 1) with large
samples ol available sample units (e.g. Lele & Keim (2006)
suggest recording resource attributes at > 10 000 available
sample units). Although the maximum likelihood estimator
associated with equation | provides unbiased estimates ol
RSPF parameters, problems persist. Recording resource
attributes [rom enough available sample units to ade-
quately approximate prevalence may be diflicult, particu-
larly il a large spatial area is considered available and
resource attributes are measured in person on the ground.
Additionally, Lele (2009) described numerical maximiza-
tion dilficulties with the maximum likelihood estimator

proposed by Lele & Keim (2006).
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Instead, one can obtain maximum likelihood estimates
(MLEs) of RSPF parameters using a partial likelihood
estimator derived [rom equation 1. Lancaster & lmbens
(1996) proposed this model in the context ol case—control
sampling (herealter called the case—control model with
contaminated controls), Lele (2009) proposed the same
model in the context ol resource selection studies and this
model is also the ‘observed’ likelihood described by Ward
et al. (2009). The primary dillerence between the case—
control model with contaminated controls proposed by
Lancaster & Imbens (1996) and Lele (2009) and the [ull
likelihood derived [rom equation 1 is that prevalence is
treated like a parameter in the case—control model with
contaminated controls. Although Lele (2009) demon-
strated that MLEs ol RSPF parameters obtained by max-
imizing this model with respect to the parameters are
unbiased, widespread misconceptions exist, which has
likely precluded widespread implementation. Keating &
Cherry (2004) encountered dilficulties [itting the case—
control model with contaminated controls, including [ail-
ure of optimization algorithms to converge to a unique
solution when using categorical covariates or il starling
values were [ar [rom actual values and lack ol commercial
software [or [itting this model. Unflortunately, the dilficul-
ties encountered by Keating & Cherry (2004) have led
others to dismiss this model as unstable and dilficult to
implement (e.g. Johnson et al. 2006; Pearce & Boyce
2006; Li, Guo & Elkan 2011). Another common miscon-
ception is that prevalence cannot be estimated [rom use-
availability data (Elith er al. 2011).

Solutions to all ol these problems have been proposed
in the literature, but widespread use of the case—control
model with contaminated controls sullers [rom poor link-
ages among relevant advancements, a divergent terminol-
ogy and thus continued misconceptions. For example,
Lele & Keim (2006) describe the circumstances under
which parameters associated with categorical covariates
can be estimated. However, they do not relerence the
problems encountered by Keating & Cherry (2004), and
thus, their solution may have gone widely unnoticed. Sim-
ilarly, Royle ef al. (2012) dispel the notion that preva-
lence cannot be estimated [rom use-availability data.
However, Keating & Cherry (2004) reler to prevalence as
the ‘unconditional probability ol use’, and Lele (2009)
simply relers to prevalence as ‘o’ (noting the constraint o
€ (0, 1)). Thus, it may be unclear to many readers that
the advancement made by Royle et al. (2012) even applies
to the models considered by Keating & Cherry (2004)
and Lele (2009). Finally, there are [ew linkages among
relevant literature. For example, Lele (2009) neither cites
Lancaster & Imbens (1996) with the original [ormulation
ol the case—control model with contaminated controls,
nor suggests the model he proposes is the same one eval-
uated by Keating & Cherry (2004). Thus, many practitio-
ners may [ail to notice that Lele (2009) provides solutions
to many ol the problems encountered by Keating &
Cherry (2004).

Use-availability RSPF 3

Here, we address commonly held misconceptions
regarding Lancaster & Imbens (1996) and Lele’s (2009)
case—control model with contaminated controls. Using
simulations, we demonsirate that parameters associated
with categorical covariates and prevalence can be esti-
mated [rom uvse-availability data. We also show that mod-
ern computational advances can be used to obtain stable
estimates ol RSPF parameters. We go beyond demon-
strating the basic [easibility ol the case—control model
with contaminated controls and evaluate model behaviour
over a variety ol realistic field conditions, which can help
guide [uture studies. We also provide R and WinBUGS
code (Appendix 81, Supporting information) to make the
model accessible to potential users. By demonstrating the
basic [leasibility ol this model, using simulations to help
guide study design and providing model code, we hope to
encourage widespread application of a promising model
in studies ol resource selection.

Materials and methods

THE CASE—CONTROL MODEL WITH CONTAMINATED
CONTROLS

We begin by deriving Lancaster & Imbens (1996) and Lele’s
(2009) case control model with contaminated controls from a
basic case control model. We believe developing this model in a
case-control context will draw explicit links between use-avail-
ability sampling and more familiar logistic regression models.
Case control sampling involves collecting a random sample of n,
used sample units from the population of N, used sample units
and a second sample of ny unused sample units from the popula-
tion of Ny unused sample units. Note that case control sampling
assumes use and nonuse 15 known without error. Relevant cova-
riates are recorded at all used and unused sample units. We
denote n; = 1 if sample unit i 18 included in either the used or
unused samples. Additionally, we denote z; = | 1’ sample unit i
possesses a trait of interest, z; = 0 otherwise. Herealter, the trait
of interest is whether a sample unit is used by the study species.
We can then write the probability of any used umit being
included in the sample as Py =Py, =1|z;=1) :i#. Similarly,
we can write the probability of any unused unit being included
in the sample as Py = P(n; = 1|z; =0) = § (Hosmer & Leme-
show 2000; Keating & Cherry 2004). Knowing the relative fre-
quencies of used and unused sample units in the population of
interest, we can write the probability of using a sample unit, con-
ditional on covariates and the probability that a unit 1s included
in the sample, as:

o oxp(By 4 In(f) + Byxi + - -+ Bixy)
1+ exp(f, l“(;::,) Ffixan 4 ﬁjx,-,-)
eqn 2

Pl = Hximi = 1)

where fiy 1s the intercept parameter and fy,...fi; are the j parame-
ters associated with the xa,....x; unique covariates. The ratio ;—t
1s the case control adjustment necessary to account [or used and
unused sample units not being sampled proportionally.

In studies of resource selection, we often know with certainty
that particular sample units are used by a species ol interest.
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However, two problems are common to use-availability data.
First, we do not know which sample units remain unused, since
failure to detect use does not mean a sample unit remained
unused. Second, we rarely know the proportion of all sample
units that were used by a species of interest. In use-availability
sampling, we still collect a random sample of n; used sample
units. In addition, we collect a second sample of n, sample units
considered available to the species of interest, without regard to
use. Relevant covariates are recorded at all used and available
sample units. We denote prevalence as m, noting that :r=%},
where N = N; + Ny. We then rewrite the case-control adjustment
introduced in equation 2 as:

P W
M .
— =0 eqn 3
My
Po R

While we do not know which of the available sample units are
used, we expect mn, sample units are used and (1-m)n, sample
units are unused. Therefore, to accommodate our uncertainty
in which available sample units are used, we redefine equation

3 as
ﬂ_|'!| I;I[n.:l_ n lI | can 4
Py mm oy, &

Ny

which allows us to express the case control adjustment in terms
of the known values n; and n,, and the unknown term =, which
is to be estimated. We can now redefine the probability a sample
unit is used, accounting for a use-availability sampling protocol,
as:

o o exp(fy HIn(ge 4 1)+ Bxa 4o+ Boy)
Vi = Pl = b = ) = o @D 4 frea T ¥ B)”
eqn 5

Above, we have established a model for the probability a sample
unit 18 used. However, in use-availability sampling, the zs are
only partially observed. We know the species used all ny used
samples, but we do not observe z; at the n, available sample
units. Therefore, we also need to develop a model for our obser-
vations, conditional on the latent state. Let y; = | for all used
samples and let y; = 0 for all available samples. Conditional on a
sample unit being used (z; = 1) and selected for sampling, we can
write the probability of observing use as:

m

;=Pyi=llzi=lg;=1)= eqn 6

n }m_,_,.'

Observing use or availability can be considered a Bernoulh trial,
and we can write the likelihood as:

n

L{ﬁﬂe ﬁls sy ﬁjs n'."‘h Xiy 115 "ﬂ) = H (‘J’r X Gl—)yj (l

i=1

s % 0)' .
eqn 7
Finally, this model is amenable to Bayesian analysis (Lele 2009),

sinee:

f(ﬁm ﬁ] saaay ﬁj‘. R’|J"J‘-. X, 1| Jia) x L(ﬁ(h ﬁ] [REE] ﬁj-. 7[|}"J‘-. Xiy ”ls-ﬂu)
XS B1) > ... x S(B;)(m)
eqn 8

where f(fy. Bi..... By ntlys xi ny, ny) is the joint posterior distribu-
tion of the parameters, conditional on the data, and f{fo), /1),
wees SUBp), fim) are the prior distributions of model parameters. R
and WinBUGS code for fitting this model 1s provided in Appen-
dix S1.

Simulation Study

We conducted a simulation study to evaluate several properties
of the case control model with contaminated controls. First, we
evaluated whether parameters associated with categorical
covariates and prevalence can be estimated from use-availability
data. Second, we show that modern computational advances (e.g.
data cloning, Lele, Denmis & Lutscher 2007) can be used to
obtain stable estimates of model parameters. Finally, we evaluate
the behaviour of parameter estimates in relation to the number
of sample units (hereafter sample size) and prevalence. We evalu-
ated models at low (n = 0.05), moderate (x = (0-45) and high
(m = 0-75) prevalence and with sample sizes of N = 1000 and
N = 2000 sample units. Sampling was evenly split between used
and available sample units, so a sample size of N = 1000 repre-
sents 7y = 500 used and n, = 500 available sample units. We thus
evaluated six unique combinations of prevalence and sample size
and randomly simulated 100 data sets per scenario.

We modelled the probability of using a sample unit as a [unc-
tion of one continuous and one categorical variable. The continu-
ous and categorical variables represent hypothetical resource
attributes at each sample umit. We fixed the intercept parameter,
Bi = 0, the parameter associated with the continuous covariate,
pi™ = 3 and the parameter associated with the categorical covari-
ate ﬁ'z”“ = —3. The entire simulated landscape was composed of
2.8 x 10° sample units. For each sample unit, we drew random
values of the continuous covanate, x;;, from a normal distribution
and we drew random wvalues of the categorical covariate, xp, from
a Bernoulli distribution. We varied prevalence by altering the
mean of the continuous covanate. For example, the mean value of
the continuous covariate was relatively small for low prevalence
scenarios, resuliing in a reduced average probabihity of use over all
sample units. We calculated the *true’ probability of using a sam-
ple unit as logit(y;™) = Bg™ + B™ x xa + 7" % xp. A sample
unit was then considered used i’ the ‘true’ probability of use at
each sample unit was greater than a number randomly drawn from
a uniform(0, 1) distribution. We considered all 2-8 x 10% sample
units available.

We fit the case control model with contaminated controls to
simulated data using Lele, Denms & Lutscher’s (2007) data-
cloning algorithm. We refer the reader to Lele, Dennmis &
Lutscher (2007) for details, but note two mmportant properties of
this algorithm. First, data cloning provides numerically stable
MLEs of parameters and associated variances and co-variances,
even when starting values are far from MLEs. Second, data clon-
ing provides Bayesian estimates when implemented with only one
clone.

Hellbender Resource Selection

As an application to field data, we [it the case-control model with
contaminated controls to Ozark hellbender (Cryptobranchus alle-
ganiensis bishopi) resource selection data collected on the North
Fork of the White River (NFWR) in southern Missouri. Hellb-
enders are relatively large, long-lived, fully aquatic salamanders
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adapied to streams with abundant rocky cover (Taber, Wilkinson
& Topping 1975; Bodinofl ef al. 2012). The Ozark subspecies 1s
endemic to a narrow region in extreme southern Missouri and
northern Arkansas where it has declined precipitously since the
1980s, resulting in listing as an endangered species under the
Endangered Species Act (Federal Register 2011). Fourteen cap-
tive-reared hellbenders were fitted with radiotransmitters and
released into the NFWR. Hellbenders were relocated approxi-
mately every 24-36 h between 19 May and 14 Nowvember 2008,
and again between 26 March and 18 August 2009. All telemetry
locations were visually confirmed and were considered used
sample units in our analysis. In this context, sample units are spa-
tial coordinates within a stream. Available sample units were ran-
domly selected from a 5-m-radius circle (79 mz) centred on each
used sample unit, which was representative of a typical home
range size for the species. Distance to cover (continuous) and sub-
strate type (fine, coarse or bedrock; categorical) were measured at
each used and available sample unit. We thus modelled the proba-
bility a hellbender used a sample umt as a function of distance to
cover and substrate type. The analysis consisted of 1749 used and
available samples (N = 3498). See Bodinof et al. (2012) for further
details on sampling methodology and Bodinofl ef al. (2013) for
archived data.

We fit hellbender use-availability data to a Bayesian implemen-
tation of the case control model with contaminated controls,
which is equivalent to using the data-cloning algorithm with |
clone (Lele, Dennis & Lutscher 2007). We fit this model in Win-
BUGS (Gilks, Thomas & Spiegelhalter 1994) via the RZWinBUGS
interface (Sturtz, Ligges & Gelman 2005; see Appendix S1 for
model code). We assumed independent normaliy = 0, o= = 100)
prior distributions for the intercept parameter and regression coef-
ficients and assumed an independent wniform(0, 1) prior distribu-
tion for m. We evaluated sensitivity to prior distributions by
additionally specifying independent normal(y = 0, @ = 1000) prior
distributions for the intercept parameter and regression coeffi-
cients. We simulated marginal posterior distributions from three
chains, each of which ran for 101 000 iterations. We discarded the
first 1000 iterations as burn-in and kept every 100th iteration
thereafter. We thus kept 3000 samples from the marginal posterior
distribution of model parameters. The Brooks Gelman Rubin
convergence diagnostic (Brooks & Gelman 1998) suggested
adequate convergence (ﬁ? = | for all parameters).

Results

SIMULATION STUDY

Our simulations demonstrated low overall bias in MLEs
and highlighted scenarios where biases may occur. We
[ound increasing variation in point estimates ol the inter-
cept parameter and regression coellicients (the f; and f,
parameters) as prevalence increased (Fig. 1), suggesting
increased ‘contamination’ ol available sample units (i.e.
available sample units are actually used) makes parameter
estimation increasingly dilficult. Increasing sample size
[rom N = 1000 to N = 2000 substantially reduced varia-
tion and bias in point estimates ol these parameters. Point
estimates [or the parameter associated with the categorical
covariate (the f, parameter, Fig. 1) showed identical pat-
terns ol variation and bias as the parameter associated

Use-availability RSPF 5
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Fig. 1. Maximum likelihood estimates (MLEs) of model parame-
ters (fo. B1. f2) obtained from fitting Lancaster & Imbens’s (1996)
and Lele’s (2009) case control model with contaminated controls
to simulated data. Each point represents MLEs [rom one simu-
lated data set. Within each prevalence scenario (n = 0-05, = 0-45
and m=0-75), top hnes indicate a sample size of 1000
(n; = ny = 500) and bottom lnes indicate a sample size of 2000
(m = ny, = 1000). Vertical solid lines represent mean MLEs from
cach prevalence/sample size scenario, and the vertical dashed line
represents the data-generating value for each parameter.

with the continuous covariate (the fi; parameter, Fig. 1),
demonstrating that parameters associated with categorical
covariates can be estimated [rom use-availability data.
Additionally, n (prevalence, Fig. 2) was estimated without
bias over all sample size and prevalence scenarios.

At high prevalence scenarios, the case—control model
with contaminated controls tended to exaggerate estimates
of f; and f, parameters. This exaggeration occurred
because ol a relatively flat ‘ridge’ in the likelihood surlace
at high prevalence scenarios (Fig. 3). This lat ridge led to
occasional overestimation of the intercept parameter, [,
and subsequent exaggeration ol associated regression coel-
ficients, which are correlated with the intercept parameter.
Increasing the sample size created a steeper likelihood sur-
[ace gradient, which reduced biases at high prevalence.

HELLBENDER RESOURCE SELECTION

Our Bayesian implementation ol the case—control model
with contaminated controls revealed a negative relation
between hellbender use ol sample units and distance (o
cover (mean fi, = —0-66, 95% CI =[—0-83, —0-50]). a
positive relation between hellbender use ol sample units
and coarse substrate (mean fi, = 096, 95% CI = [0-76,
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Fig. 2. Maximum lkelihood estimates (MLEs) of prevalence (m)
obtained [rom fitting Lancaster & Imbens’s (1996) and Lele’s
(2009) case control model with contaminated controls to simu-
lated data. Each point represents MLEs from one simulated data
sel. Within each prevalence scenario (m = 0-05, == 045 and
7t = 0-73), top lines indicate a sample size of 1000 (n, = n, = 500)
and bottom lines indicate a sample size of 2000 (n, = n, = 1000).
Vertical sohd lines represent mean MLEs [rom each prevalence/
sample size scenario, and the vertical dashed line represents the
data-generating value.

Fig. 3. Log-likelihood surface of the case control model with
contaminated controls calculated from a high prevalence
(m = 0-75), n = 1000 (n, = n, = 500) simulation scenario. The sin-
gle point represents the mimimum —1 x log-likelihood. This log-
likelihood surface demonstrates the increasingly shallow gradient
at high values of fiy and f;.

1-18], Fig. 4) and no relation between hellbender use ol
sample units and bedrock substrate (mean fi; = —0-13,
95% CI = [—0-43, 0-17]). Our model also estimated low
hellbender prevalence (mean # = 0-03, 95% CI = [0-00,

0-20

Probability of Use

0 17 35 5.4 72 9
Distance to Cover (m)

(b)

0-10

¢

Bedrock

Probability of Use
0-00
- _.. —— - —

Coarse

Fig. 4. Estimated probability a hellbender would use a location
within a stream as a function of (a) distance to cover and (b)
river substrate. The estimated distance to cover response assumes
an underlying coarse substrate. The estimated river substrate
response assumes a constant distance to cover of 0-60 m (the
average distance to cover measured at all available sample units).
Response curves were calculated from a Bayesian implementation
ol Lancaster & Imbens’s (1996) and Lele’s (2009) case control
model with contaminated controls. The solid line or point repre-
sents the mean estimated response for each level of a covanate,
and the dashed lines represent 95% credible intervals.

0-10]), suggesting low probability ol using any sample unit
within the NFWR. This is consistent with current under-
standing of Ozark hellbenders, which
throughout the NFWR. We [ound marginal posterior dis-
tributions ol Bayesian models to be insensitive to choice

remain rare

ol prior distributions selected [or this analysis.

Discussion

Our results demonstrate that the case—control model with
contaminated controls originally proposed by Lancaster
& Imbens (1996) and subsequently proposed by Lele
(2009) is a stable and unbiased method flor estimating the
parameters ol RSPFs [rom use-availability data. We over-
came all ol the previously reported shortcomings ol this
model, including sensitivity of optimization algorithms to
starting values and an inability to estimate prevalence and
parameters associated with categorical covariates. Keating
& Cherry (2004) reported [ailure ol optimization algo-
rithms to converge to a unique value il starting values
were [ar [rom MLEs. However, this result was a [unction
ol the optimization algorithm rather than a [law in the
model itsell. I the likelihood surface contains local max-
ima, gradient-based optimization algorithms may con-
verge on local maxima rather than global maxima il
starting values are [ar [rom data-generating values. Mod-
ern computational advances, such as Lele, Dennis & Lut-
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scher’s (2007) data-cloning algorithm, help overcome these
optimization issues. Data cloning relies on Markov chain
Monte Carlo (MCMC) techniques often used [or Bayes-
ian estimation. As a result, data cloning will converge on
MLEs, even il starting values are [ar [rom MLEs and
local maxima exist (Gelman et al. 2004; Lele, Dennis &
Lutscher 2007). Our results also address the commonly
held misconceptions that neither categorical covariates
(Keating & Cherry 2004) nor prevalence (Elith ef al.
2011) can be estimated [rom use-availability data. Our
simulations indicate that the case—control model with con-
taminated controls produces unbiased estimates ol both
categorical covariate parameters (the ff; parameter) and
prevalence (m). Although Lele & Keim (2006) described
the conditions under which categorical covariate parame-
ters can be estimated, and Royle er al. (2012) dispel the
notion that prevalence cannot be estimated [rom use-
availability data, we explicitly link these solutions to the
problems encountered by Keating & Cherry (2004).

We believe the case—control model with contaminated
controls oflers several advantages when modelling
resource selection ol animals. Absolute probabilities are
more intuitive to interpret than relative probabilities.
Indeed, probabilistic interpretations are so intuitive that
many soltware programs that construct RSFs [rom use-
availability data (e.g. Maxent; Phillips, Anderson &
Schapire 2006) produce output scaled between O and 1
(which is often erroneously interpreted as absolute prob-
abilities). The case—control model with contaminated
controls offers managers the ability to estimate the abso-
used,

straightforward comparisons between species and studies.

lute probability a sample unit is [acilitating
Furthermore, models commonly used to estimate the
parameters of RSFs, such as the exponential model
(Manly et al. 2002, p. 100) or Maxent (Phillips, Ander-
son & Schapire 2006), produce resource selection ‘indi-
ces’, which may not be proportional to the absolute
probability of use (Keating & Cherry 2004; Royle et al.
2012). In contrast, we demonstrated the case—control
model with contaminated controls produces unbiased
estimates ol RSPF parameters. Finally, this model [acili-
tates estimation ol RSPF parameters with modest sample
size requirements relative to alternative methods (e.g.
Lele & Keim 2006; Royle er al. 2012), particularly il
resource variables at available sample units are to be
measured in the field. We thus believe the case—control
model with contaminated controls will provide a practi-
cal method lor estimating the parameters ol RSPFs [rom
field data.

Qur simulations revealed potential sources of bias in
the case—control model with contaminated controls. We
expected some bias at high prevalence, since this leads to
many available sample units that were actually used (i.e.
‘contaminated controls’). In practice, we do not expect
contamination rates at the level explored in simulated
data (m = 0.75) to be a problem, since common species
(those with high prevalence) are more efliciently sampled
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using dillerent protocols. For example, estimating the
probability that a common species uses a sample unit
may be more ellicient by simply surveying a random
selection ol sample units and recording detection/nonde-
tection. Indeed, a use-availability design is likely most elli-
cient when the species ol interest is relatively rare or
dillicult to detect, such that lew observations would be
made [rom a selection ol sample units made without
regard to use.

Qur application of the case—control model with contam-
inated controls to hellbender use-availability data high-
lights the utility of this model when applied to a real data
set. Recovery ol Ozark hellbenders, like many rare habitat
specialists, depends on conservation ol specilic resources
that may naturally occur at low densities. In such circum-
stances, conservation planning can benelit [rom tools
designed to identily habitat characteristics ol high conser-
valion priority, as well as species prevalence. For exam-
ple, our application of this model was uselul [or
identifying resource characteristics likely to be important
to hellbenders as well as their rarity in a biologically rele-
vant spatial extent (i.e. a river). Our estimates ol the rela-
tion between probability ol use and coarse substrate and
distance to cover are consistent with Bodinol ef al.
(2012). However, our implementation had the advantage
ol estimating the absolute probability a hellbender would
use a particular section ol stream as a [unction ol sub-
strate and distance to cover. Estimating absolute proba-
bilities ol use is particularly uselul lor species that occur
at low or high prevalence, since relative probabilities may
be uninformative in this context. Indeed, we lound that
Ozark hellbenders were approximately 2-6 times as likely
to use sections of stream that contain coarse substrate
(because the odds ratio of using coarse substrate =
el = ¢% = 2.61). However, the low prevalence estimated
by our model indicates that they are still unlikely to use
any portion of the NFWR. These [indings emphasize the
importance ol identilying patches ol densely arranged
coarse substrate in NFWR as a conservation strategy [or
Ozark hellbenders.

In addition to estimating probabilities of use within a
study area, parameters estimated using the case—control
model with contaminated controls can also be used to
predict the absolute probability ol use at new sample
units. This represents a major advantage ol the case—con-
trol model with contaminated controls relative to model-
ling approaches that estimate the parameters ol RSFs,
since predictions of absolute probability of use are
straightlorward to interpret and compare across species.
Accordingly, all ol the tools commonly used to evaluate
predictive performance (e.g. AUC, Fielding & Bell (1997),
k-lold cross-validation, Boyece et al. 2002) can be used to
validate RSPFs. Evaluating the predictive performance ol
a model with independent data is oflten the most uselul
way o evaluate that model’s generality.

Our implementation ol the case—control model with
contaminated controls assumes independence ol used and
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available samples. Assuming independence ol used sam-
ples may be problematic il observations ol space use are
highly correlated. However, certain sampling protocols
may help alleviate spatial autocorrelation in used samples.
For example, ensuring that successive locations are ade-
quately spaced in time may help alleviate concerns with
spatial autocorrelation (Swihart & Slade 1983). Hellben-
der locations were separated by at least 24 h, which was
assumed Lo be an adequate period [or successive locations
to be spatially independent. If spatial correlation is
believed to be present in used samples, models that allow
spatially correlated errors can be used. An autologistic
model (Augustin, Mugglestone & Buckland 1996) may
prove particularly uselul in this context, since an autolo-
gistic model and the case—control model with contami-
nated controls rely on the same underlying RSPF.
Another way to address spatial correlation in used sam-
ples is to model resource selection at the level ol the indi-
vidual ammal and scale individual estimates to the
population level (Marzlull ef al. 2004; Thomas, Johnson
& Grillith 2006). Spatial correlation represents a [orm of
pseudoreplication (Hurlbert 1984), leading to overly pre-
cise, butl unbiased, parameter estimates (Kulner et al.
2005). Thus, when population-level estimates are based on
individual-level mean responses, spatial autocorrelation
becomes irrelevant because individual-level means remain
unbiased.

A critically important step in modelling use-availability
data is delining what resources (or sample units) are avail-
able. In principle, all used resources represent a subset of
available resources (Buskirk & Millspaugh 2006). Depend-
ing on the scale of the study, availability may be delined
based on movement paths or home ranges ol individual
animals, up to the distributional limits ol a species (Bus-
kirk & Millspaugh 2006; Thomas & Taylor 2006). Addi-
tionally, availability 1s oflten defined by study site,
political boundaries or by the limits ol GIS coverage (e.g.
when delining the ‘background’ in Maxent), though such
arbitrary definitions can strongly allect inflerence regard-
ing general patterns ol resource selection (Johnson 1980).
Definitions ol what is available to an animal will necessar-
ily difler to reflect study goals, though we recommend
delinitions that are biologically meaninglul to a species
rather than delinitions based on convenience (e.g. conve-
niently available GIS layers).

Sample size should be considered when estimating the
absolute probability ol use [trom use-availability data.
Even at sample sizes considered large [or some [ield stud-
ies (n; = n, = 500), the case—control model with contami-
exhibited
prevalence. A one-size-[its-all sample size recommendation

nated controls nontrivial bias at high
is potentially problematic, since biases may operate as a
function ol underlying parameters such as prevalence or
strength of resource selection. Nonetheless, we recom-
mend samples no smaller than 500 or 1000 used sample
units. We encourage potential users to conduct prospec-

tive simulations to guide appropriate sampling design

when using this model, including exploration ol various
nonlinear response [unctions (e.g. guadratic, threshold)
and link [unctions (e.g. probit link).

Given the relatively large-sample requirements, the
case—control model with contaminated controls will prob-
ably be most uselul when applied to data collected [rom
animals [fitted with radiotelemetry or satellite GPS tech-
nology. However, we note that this model is not
restricted to such data. This model may also be suitable
for large-scale survey eflorts that generate reliable pres-
ence points, but do not generate reliable absences. For
example, the case—control model with contaminated con-
trols may prove uselul for modelling breeding bird survey
data, which generates reliable detections ol breeding
birds, but has been plagued by uncertain absences.

Our results tie together pieces ol a disparate literature
and demonstrate the unbiased nature ol the case—conirol
model with contaminated controls. We address the mis-
conceptions that have prevented widespread use ol this
model and discuss how they can be overcome. Further,
we identify conditions when the case—control model with
contaminated controls may not be appropriate, helping
guide the appropriate application ol this model. Although
presented in a resource selection context, this model can
be exlended to any context where a researcher wishes (o
compare a group with a known [eature to the population
as a whole. By demonstrating the unbiased nature ol the
case—control model with contaminated controls, we hope
to spur [urther research into a model that promises to be
a powerlul tool in studies ol resource selection.
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