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Executive Summary  
During 2015-2016, we completed development of a new analytical framework for landbird 
population monitoring data from the National Park Service (NPS) North Coast and Cascades 
Inventory and Monitoring Network (NCCN). This new tool for analysis combines several recent 
advances in modeling population status and trends using point-count data and is designed to 
supersede the approach previously slated for analysis of trends in the NCCN and other networks, 
including the Sierra Nevada Network (SIEN). Advances supported by the new model-based approach 
include 1) the use of combined data on distance and time of detection to estimate detection 
probability without assuming perfect detection at zero distance, 2) seamless accommodation of 
variation in sampling effort and missing data, and 3) straightforward estimation of the effects of 
downscaled climate and other local habitat characteristics on spatial and temporal trends in landbird 
populations. No changes in the current field protocol are necessary to facilitate the new analyses. We 
applied several versions of the new model to data from each of 39 species recorded in the three 
mountain parks of the NCCN, estimating trends and climate relationships for each species during 
2005-2014. Our methods and results are also reported in a manuscript in revision for the journal 
Ecosphere (hereafter, Ray et al.). Here, we summarize the methods and results outlined in depth by 
Ray et al., discuss benefits of the new analytical framework, and provide recommendations for its 
application to synthetic analyses of long-term data from the NCCN and SIEN. All code necessary for 
implementing the new analyses is provided within the Appendices to this report, in the form of fully 
annotated scripts written in the open-access programming languages R and JAGS. 
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Glossary  
Imperfect detection -- Detection probability (detectability) is the probability of detecting an 
individual of a given species during a point count survey, given that individual is present. Detection 
is imperfect when detection probability is less than one. Many factors can affect detection probability 
for a given species and survey method, including the individual’s distance from an observer, observer 
skill, weather, time of day or season, and habitat structure. 

Modeling -- A model is a formal simplification of a more complex system that we are trying to 
understand. Modeling is the practice of abstracting relevant processes and describing them, often 
mathematically, in ways that allow useful and testable predictions. Estimating a parameter, like 
population size, is a form of modeling, in which key assumptions are made to simplify the 
relationship between what we know (e.g., a count) and what we want to know (the actual number of 
individuals present). 

Hierarchical model -- Hierarchical models involve the decomposition of a complex relationship into 
a series of interdependent submodels to facilitate understanding and computation as well as to clarify 
all levels of uncertainty in the relationship. A simple example would involve a sequence of random 
variables, e.g., a count of y individuals, a population size of N, and a detection probability of p, with 
perhaps several factors affecting detection. The hierarchy in this example involves one level in which 
y is a function of N and p, and another level in which p is a function of factors like observer identity, 
habitat qualities and seasonal processes (e.g., initiation of breeding behavior). 

Parameter -- A parameter is a feature of a population or process that we can estimate using a sample 
and sample statistics. For example, population density is a parameter that can be estimated from 
individuals detected per unit of area.  

Bayesian model -- A Bayesian model is one that allows us to estimate parameter values by 
incorporating prior information about the distribution of values each parameter might take, using 
Bayes’ rule. For example, if we were trying to estimate the abundance of a population and we had 
some samples from a current study and some samples from a prior study, we could use a Bayesian 
model to update our prior estimate of abundance using our current data. Our prior estimate (E) would 
have some distribution of probable values (e.g., a mean and standard error, or perhaps a range of 
potential values with no central tendency). This prior estimate can be written as p(E), the prior 
probability distribution or “prior density” of our estimate. An updated version of p(E), based on new 
data (D), would be p(E|D) or the probability density of E given D. Bayes’ rule, which is often 
presented as p(E|D) ~ p(D|E)p(E), provides a method for calculating p(E|D), which is our updated 
(better) estimate, aka the “posterior density” of E. Bayes’ rule shows us that to find the posterior 
p(E|D), we adjust the prior p(E) by p(D|E), which is the probability density of observing D given 
some potential values of E, aka the likelihood of D given E. The best current estimate for E is the one 
that maximizes this likelihood, and the full posterior density for E is determined by multiplying the 
densities of the likelihood and the prior. Bayesian models are built on a rigorous theory and are quite 
useful in practice, but their use has lagged behind classical “frequentist” methods because calculating 
the joint probability density of all the parameters in even a moderately complex model was 
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impractical before the advent of modern computers and simulation methods such as Markov chain 
Monte Carlo.  

Posterior predictive distribution -- The posterior predictive distribution is the distribution that a set 
of predicted data would have, based on a predictive model and the distribution of observed data.  

Markov chain Monte Carlo -- Markov chain Monte Carlo (MCMC) is a simulation technique used 
to draw samples from a posterior distribution, allowing for the analysis of even very complex 
Bayesian models. For example, plotting a raw or smoothed histogram of MCMC samples can reveal 
the shape of the posterior distribution, which defines the density of an estimated parameter or the 
joint density of multiple parameters. Here, the JAGS programmable platform (Plummer 2003) is used 
to perform MCMC simulation and to provide summaries of the resulting samples. 

Credible interval -- A credible interval is the Bayesian counterpart to the traditional (frequentist) 
confidence interval, with an important distinction: Using the 95% confidence interval as an example, 
the frequentist version does not actually contain the target parameter value with a probability of 95%, 
but a Bayesian 95% credible interval does contain the target parameter value with a probability of 
95%. This distinction means that Bayesian credible intervals can be used to interpret the probability 
of model outcomes and parameter values in a more straightforward manner. In this report, "95% CI" 
refers to a Bayesian credible interval. 

Binomial random variable -- A binomial variable is a quantity that can vary according to a 
binomial distribution, its values being described well by the discrete probability distribution of the 
number of successes in a sequence of n independent yes/no experiments, each of which yields 
success with probability p, such as the outcome of attempts at detecting a bird. 

Generalized linear models -- A linear model relates a response variable y to predictor variables 
under the assumption that the relationship is linear and that the error distribution for y is normal 
(Gaussian). The error distribution in this case describes the probability of any given difference 
between observed y and y predicted by the linear relationship. In generalized linear models, the 
assumption of a Gaussian error distribution is relaxed, allowing for response variables that have other 
error distributions, such as Poisson or binomial distributions. 

Poisson model -- “Poisson model” is a general term indicating that we have assumed the variable of 
interest can be modeled as a random draw from a Poisson distribution, which differs from a Gaussian 
distribution in two key features: the variance of a Poisson distribution is equal to its mean, and its 
values are discrete and positive. A Poisson model expresses a count that arises from independent 
events that occur at an average rate in space and/or time. A common form of “Poisson model” is 
Poisson regression, a form of generalized linear regression used when the response variable has a 
Poisson distribution. 

N-mixture models -- An N-mixture model applied to abundance estimation typically pairs a Poisson 
model of true N (abundance) with a binomial model of observed N (counts). The binomial mixture 
model is named for the mixture of binomial models, each with a potentially distinct sample size N, 
that determine model likelihood. N-mixture models provide a hierarchical extension of generalized 
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linear models, linking multiple GLMs (e.g., Poisson and binomial) to allow for structure in 
parameters at each hierarchical level (e.g., environmental covariates of abundance and effects of 
survey conditions on detection). 
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1.0 Challenges in the estimation of trends from point-count 
data 

In 2007, the National Park Service (NPS) North Coast and Cascades Inventory and Monitoring 
Network (NCCN) began monitoring landbird populations in five National Parks, in a program that 
has served as a model for other resource monitoring efforts within the NCCN and in other networks. 
The peer-reviewed NCCN landbird monitoring protocol (Siegel et al. 2007) was tightly integrated 
with an analytical approach for assessing population trends in the larger parks, involving a multi-step 
process whereby 1) observations were corrected for imperfect detection using a distance-based 
detectability function, 2) mean transect-scale trends were estimated for each elevation stratum based 
on the corrected counts, and 3) trends were estimated at the park (or combined-park) scale based on 
the mean stratum-level trends and the relative size of the sampling frame in each elevation stratum. 
During production of the first multi-year synthesis report on landbird trends (Saracco et al. 2014), 
several limitations to the original analytical approach were identified, including 1) low confidence in 
some of the assumptions involved in estimating detectability from data on detection distance, 2) often 
prohibitively large sample sizes needed to fully account for all likely sources of heterogeneity in 
detection probability, 3) failure to incorporate uncertainty in slope estimation at the scale of the 
individual transect into variance estimation at larger scales, 4) difficulty in estimating park-level 
trends for species that were rare in one or more elevation strata, and 5) the lack of a clear framework 
for assessing effects of covariates on temporal or spatial variation in species densities. Addressing 
these limitations is of particular interest for monitoring landbirds not only in the NCCN but also in 
other NPS units, because the NCCN monitoring protocol has in large part been adopted also as the 
monitoring protocol for the Sierra Nevada Network, and has been published as part of the NPS 
Natural Resource Report series (Siegel et al. 2010). 

1.1 Overview of recent advances in methods of point-count analysis  
Recent methods applied to point-count data allow for modeling various components of the detection 
process and analyzing observations, population state and trends simultaneously (Royle 2004, 
Alldredge et al. 2007a, Kéry 2008, Nichols et al. 2009, Dail and Madsen 2011, Schmidt et al. 2013, 
Amundson et al. 2014, Kéry and Royle 2016). Given within-season replication of counts, such as the 
multiple count intervals adopted in the NCCN protocol, individual detection histories can be used 
within a closed-population framework to account for detection probability when modeling population 
size (Alldredge et al. 2007a) or occupancy (Saracco et al. 2011). Trends in occupancy or population 
size can be modeled using detection histories within and across seasons (Royle 2004, MacKenzie et 
al. 2006, Kéry et al. 2009). Time- and distance-of-detection data available from NCCN point-counts 
can be used to exploit a combined time-removal and distance-sampling method for modeling 
population status while accounting for both the availability and perceptibility of individual birds 
(Amundson et al. 2014), where availability and perceptibility are distinct components of detection 
probability (Alldredge 2004). The Amundson et al. (2014) approach is suited especially for modeling 
data from situations in which only a single visit to each point-count station is possible within the 
breeding season. Although single-visit studies cannot directly address variation in detection 
probability throughout the breeding season (Schmidt et al. 2013, Mizel et al. 2017), many studies 
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lack the resources to support multiple visits. Instead of temporally independent counts, these studies 
employ multiple count intervals within a single visit. Methods also exist to allow for count intervals 
of varying length (Farnsworth et al. 2002), an important feature of the NCCN protocol. Most of these 
methods are based on “N-mixture” models (Royle 2004) that typically pair a Poisson model of true N 
(abundance) with a binomial model of observed N (counts). The binomial mixture model is named 
for the mixture of binomial models, each with a potentially distinct sample size N, that determine 
model likelihood. N-mixture models provide a hierarchical extension of generalized linear models 
(GLMs), linking multiple GLMs (e.g., the Poisson and binomial GLMs described here) to model 
structure in parameters at each level of the hierarchy as functions of environmental or survey 
conditions (Kéry and Royle 2016). All of these methods address limitations of the previous analytical 
approach, by accounting for uncertainty in the detection and state processes simultaneously and at 
multiple spatial scales (point, transect, stratum, park). Importantly, N-mixture models can account for 
random effects (e.g., observer effects on detection), allow for species presence at points with zero 
detections (the previous approach considered zero counts as true zeros uncorrected for detection 
probability), and provide a model-based method for assessing trends. Implemented in a Bayesian 
framework and using the Markov chain Monte Carlo (MCMC) method for parameter estimation, this 
approach also allows parameter summaries at multiple scales. 

1.2 Products proposed for improved estimation of trends 
To address the challenges inherent in estimating NCCN landbird trends, we (the principals and 
cooperators) proposed to develop a new framework for trend analyses combining recent advances in 
modeling detectability, population status and trend simultaneously as functions of environmental 
covariates. Ideally, this new, model-based framework should accept data from the original sampling 
design while providing solutions to the challenges identified, as well as providing greater flexibility 
for dealing with missed or reduced sampling effort. In addition, we sought clear applicability to bird 
and other monitoring data from other networks. Specifically, the new analytical framework should 
employ the flexibility of Bayesian hierarchical models and the functionality of parameter estimation 
via Markov chain Monte Carlo (MCMC) methods. Hierarchical models were selected to take 
advantage of existing count replication within and among years (e.g., multiple count intervals within 
visits), features of the monitoring protocol that were previously unexploited. The objectives of our 
proposal were stated as follows: 

• Trend analysis; we will use the new modeling framework to assess population trends of 
landbirds in the NCCN using annual monitoring data collected from 2008-2013.  

• Assessing the effects of missing or reduced sampling effort on trend detection; we will assess 
the sensitivity of trend analyses to missing data, and evaluate inference costs of reduced 
sampling effort. 

• Assessing the effects of weather or other covariates on annual occupancy rates; we will use 
park and regional climate data to assess the effect of snowpack and other annual weather 
variables on annual landbird population sizes in the parks. 
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• Modeling environmental correlates of species occupancy; for a small suite of declining 
species (e.g., Rufous Hummingbird, Olive-sided Flycatcher) we will use environmental 
covariates from other park data sets to model species-habitat relationships. 

As stated in the funded proposal, this report will also explore whether any changes to field methods 
or operational aspects of the NCCN landbird monitoring program would be warranted to support the 
new analytical framework. 
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2.0 Specification of the new analytical framework 
To encourage the adoption of our analytical framework and to facilitate the replication of our results, 
we used freely available software for all phases of our analysis. Parameter estimation was performed 
in JAGS (Plummer 2003), which employs MCMC simulation to fit Bayesian hierarchical models. 
We called JAGS from the R statistical computing environment (R Development Core Team 2015) 
using the jagsUI package (Kellner 2015), and used R for pre-processing data and post-processing 
results.  

We tested our approach by fitting models to ten-year datasets for many of the species detected in the 
three mountain parks of the NCCN: North Cascades National Park Complex (NOCA), Olympic 
National Park (OLYM), and Mount Rainier National Park (MORA). Our three-level hierarchical 
model allowed estimation of 1) components of individual detection, including effects of covariates 
on probabilities of individual availability (e.g., would it sing during our count?) and perceptibility 
(would we hear it?); 2) point-year counts as a function of availability and perceptibility; and 3) 
spatiotemporal trends in abundance, including effects of climate. Model structure (Fig. 1) is detailed 
in Ray et al. 

 
Figure 1. Graphical representation of directed relationships between data (squares) and estimated 
parameters (circles) in the models presented here. Focal parameters appear in black circles. Arrows 
indicate process flow. Actual bird abundance (N) was modeled as a Poisson-distributed function of mean 
abundance (λ) and its covariates (e.g., year, park, elevation or stratum, transect). The per-minute rate of 
detection failure (q) and its covariates (observer, date, hour) informed availability for detection (pa), which 
in turn influenced the interval (j) in which each bird was detected and our estimate of the number of birds 
available for detection (n). Finally, the rate at which detections fall off with distance (σ) and its covariates 
(tree cover, noise) controlled detectability (pd) and the observed detection distance-bin (b), as well as the 
number of available birds detected (y). 

2.1 Modeling individual observations 
Level 1 in this hierarchical modeling framework included removal-based estimation of the 
probability that individuals were available for detection (aka “availability”) and distance-based 
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estimation of the probability that individuals were perceptible (aka “perceptibility”). In other words, 
birds detected in earlier intervals (e.g., those that sang more frequently) were more available for 
detection, and those detected at farther distances (e.g., louder singers) were more perceptible. 
Building on Amundson et al. (2014), detection probability at a given point k in year t, pkt, was 
characterized in terms of a bird’s availability for detection, pakt, and its distance-mediated 
perceptibility to the observer, pdkt. Note that this approach can account for variation in availability 
and perceptibility among years and points but, because our data derive from a single visit per point 
per season, we could not directly estimate variation in pa and pd throughout the breeding season at a 
given point. We adopted the Amundson et al. (2014) approach because the scale and topography of 
our sampling frame combined to preclude multiple visits within the short breeding season, given the 
resources available for monitoring these species. To minimize the effects of this constraint, we 
attempted to time our point counts to coincide with the local peak in territorial singing by most 
songbird species. Each year we began surveying transects in the low-elevation stratum in late May 
after most passage migrants had likely departed. We then proceeded to conduct surveys in the mid- 
and finally high-elevation strata as spring-like conditions developed at higher elevations (Siegel et al. 
2007, 2010).  

Because our data derived from multiple count intervals of different lengths (one interval of three 
minutes followed by one or two intervals of two minutes each), we followed Farnsworth et al. (2002) 
in modeling interval-specific probabilities of availability using time-removal data, in which each 
detection of a unique individual is assigned to one of the three count intervals, and subsequent 
detections of the same individual are ignored. Defining the per-minute probability of failing to detect 
a bird as q (Fig. 1), the probability that a bird was never detected across all three intervals (totaling 
seven minutes) was qkt

7, so that pakt = 1-qkt
7. By defining pakt in terms of 1-qkt, we were able to 

account for unequal interval lengths while modeling bird availability for detection as a function of 
point- and/or year-specific covariates, xkt, as logit(qkt) = β0 + ∑x βxxkt. Thus, we were able to estimate 
effects of date (day-of-year) on availability, as a metric of whether pa varied over the season. 
However, note that our attempts to sample each point at the peak of territorial singing likely reduced 
our ability to observe effects date on pa. 

To characterize effects of distance on perceptibility, pdkt, we first dropped about 10% of the farthest 
(least accurate) observations of each species (per Kéry and Royle 2016) and then sorted this 
truncated detection-distance data into variable-width bins, equalizing the number of individual 
detections in each bin (per Amundson et al. 2014; we also explored other binning methods as 
discussed below). We modeled the probability that a bird was detected in distance bin b within the 
truncation radius of point k and year t, as pdkt = ∑ b π.dktb, where π.dktb was the probability of 
detection in bin b, a detection-distance function based on the half-normal distribution (Buckland et 
al. 2001, Farnsworth 2005, Royle et al. 2004, Amundson et al. 2014). The half-normal distribution 
has shape parameter σkt, the decay rate of detections by distance, allowing us to model detectability 
as a function of covariates, xkt (e.g., tree cover, cover density, ambient noise level, group size), as 
log(σkt) = log(σ0) + ∑x βxxkt. 
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2.2 Modeling the count at each point 
Level 2 involved relating each point- and year-specific count of the focal species, ykt, to a specific 
population size, Nkt, through the processes of availability and perceptibility. The number of 
individuals available for detection was modeled as a random variable drawn from a binomial 
distribution defined by the actual population size and the proportion available for detection, nkt ~ 
Binomial(Nkt, pakt). The subsequent count was modeled as a random variable drawn from a binomial 
distribution defined by the number of individuals available for detection and their detectability, ykt ~ 
Binomial(nkt, pdkt). 

2.3 Modeling the population across points and years 
In level 3, we characterized spatial and temporal variation in focal species abundance by modeling 
the expected population size at point k and year t, λkt , as a log-linear function of point- and year-
specific fixed and random effects, such as log(λkt) = parkp[k] + yeart + parkp[k] : yeart + transectk + ∑x 
βx xkt. In this example, the intercept parkp[k] could vary across the three mountain parks (indexed by 
p), random effect yeart could interact with parkp[k], and random effect transectk accounted for the 
spatial pattern of point-count stations, while covariates xkt included year (for estimation of trend) and 
metrics of climate. Regional trends were estimated by replacing park-specific terms with an overall 
mean. The simplest (regional trend) model we considered included a single intercept, a linear effect 
of year, a fixed effect of year and a random effect of transect. 
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3.0 Application to NCCN landbird monitoring data 
We used the new framework to estimate trends for 39 species, including nearly all species detected 
more than five times per average park-year. Of the species detected more than five times per average 
park-year, we excluded four species (Pine Siskin, Red Crossbill, Evening Grosbeak and Vaux’s 
Swift); because these four were detected commonly in flocks, they did not conform to model 
assumptions. The 39 focal species exhibited a variety of nesting and dietary traits that might affect 
species response to climate, and included 15 “residents” that overwinter in the Pacific Northwest. 

3.1 Landbird data preparation and review 
Outputs from two queries of the NCCN landbird monitoring database were used for our analyses:  

1) “qs_a121_Distance_export_matrix...csv” (abbreviated hereafter as qs_a121) 
contained primarily “survey” data consisting of (usually) one record for every bird observed 
in every point-year, and 

2) “qs_a204_Transect_coordinates_export...csv” (qs_a204) contained point 
data consisting of one record for every point visited in each year. 

The R script “script4processingQueryData.R” (Appendix 1) reads the .csv output from 
both queries and processes these data for use by a subsequent script that performs model fitting. 
Some of the survey and point data in these two queries overlap, and these overlapping data are 
processed separately (redundantly) so that we can write stand-alone copies of each query’s processed 
output to file. Specific operations on the survey data (qs_a121) include: converting blanks in 
interval data Int_5_7 and Int_3_5 to zero after 2010 or to “NA” before 2011; changing “-1” in 
Int_3_5 and Int_5_7 to “1” (“-1” is the code for a positive detection in the database); making sure all 
blanks have been replaced with “NA” or known values, as appropriate (e.g., for all records of 
Species=NONE, blanks in Obs_distance_m are set to “NA”); extracting ordinal Day and Hour from 
Start_date and Start_time; creating “removal” data from interval data (Int_0_3, Int_3_5, Int_5_7) 
after 2010; handling records for which Nearest_obs = FALSE or zero (more on this below); and 
writing the processed data to a file for later use in model fitting (e.g., 
“nccn.survey.data.2005to2014.csv”). Specific operations on the point data (qs_a204) 
include: removing transect-origin points (where no counts occur); distributing “best” coordinates and 
GIS-derived point covariates for point x to each year of data for point x; transferring point covariates 
from qs_a121 to the point data file and trimming redundant columns; distributing the 
Stratum_name for each point x to each year of data for point x; and writing the processed data to file 
for later use (e.g., “nccn.site.data.2005to2014.csv ”). 

The data processing script (Appendix 1) also includes many tools for data review to provide 
additional quality assurance prior to modeling. Several issues arose during the early application of 
this script to the data, suggesting the need for further data review and minor revisions to the nature of 
the data provided by the NCCN landbird monitoring database. For example, some exceptionally large 
slope values returned by one query led to the discovery that slope and aspect had been calculated 
incorrectly from elevation data; the calculation was corrected and the database recertified. Each of 
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these issues was explored and exemplified using data from North Cascades National Park Complex 
(NOCA), and the results were reported in a document, 
“DataExplorationNOCA_AllComments.docx” which is linked directly to the NCCN 
landbird monitoring database. 

Using the tools for data visualization provided in the data processing script (Appendix 1), we further 
explored the structure of these data by graphing raw counts and counts adjusted by sampling effort 
for each species against environmental and survey variables suspected as potential covariates. 
Examples featuring Clark’s Nutcracker (CLNU) appear in Appendix 2. 

3.2 Climate data preparation and review 
To assess effects of snowpack and other annual weather variables on landbird population density in 
the parks, we selected ClimateWNA as a source of downscaled covariates. ClimateWNA uses 
bilinear interpolation and local elevation adjustment to downscale monthly, gridded climate data as 
scale-free point data (Wang et al. 2016), providing climate metrics directly estimated for each point 
along our transects. Records from park SNOTEL sites and other local weather data are represented as 
inputs to the gridded climate product. By using a free and widely reviewed product like 
ClimateWNA, rather than raw local data, we have increased the accessibility and reproducibility of 
our analyses.  

Outputs from two queries were used for our analyses of ClimateWNA data:  

1) “nccn.wna.pts_2004_2014.csv” contained annual climate data for each point-year, 
and 

2) “nccn.wna.pts_Normal_1971_2000.csv” contained average climate (“normals”) 
for each point during 1971-2000. 

Annual data and 1971-2000 normals were accessed from http://www.climatewna.com using the 
protocol and code in Appendix 3. The “script4climateWNAdata.R” (Appendix 3) prepares 
query input files and processes query output for use in model fitting. 

To characterize spring conditions, we selected mean spring temperature (MST, the average daily 
temperature from March 1 through May 31) and annual precipitation-as-snow (PAS, millimeters of 
snow falling between August 1 and July 31). We calculated MST and PAS as anomalies, relative to 
1971-2000 normals, for use as predictors of population size, under the expectation that breeding and 
recruitment would be inversely related to snowfall and directly related to temperature. For surveys in 
year t, lag-1 MST was the mean temperature anomaly from March 1 to May 31 of year t-1, and lag-1 
PAS was the snowfall anomaly from Aug 1 of year t-2 to July 31 of year t-1. We considered both 
additive and interaction effects of these anomalies and, because the correlation between MST and 
PAS was moderate (Kendall’s τ = -0.45), we also considered a model based on PAS and “residual 
MST”, the residuals of a linear regression of MST anomalies on PAS anomalies (Graham 2003). 

http://www.climatewna.com/
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3.3 Summary of results for 39 landbird species 
The R script “script4trendAnalysis.R” (Appendix 4) reads the .csv output files described 
above (from “script4processingQueryData.R” and “script4climateWNAdata.R”) 
and further formats the data for use in hierarchical models. Finally, the data are fitted to a model 
using the JAGS (Plummer 2003) interface package jagsUI (Kellner 2015).  

Results are detailed in Ray et al. and outlined here. Fitting a model without park or climate effects, 
we estimated that all but one species were either stable or increasing across the sampled points in 
these three parks during 2005-2014 (Fig. 3 of Ray et al.). Fitting a park-structured trend model 
without effects of climate also suggested widespread stability or increase among these species (Fig. 4 
of Ray et al.). There was also some evidence of spatial rather than temporal fluctuations over this 
period, with population decline in one park offset by increase in another (Fig. 2).  

 
Figure 2. Annual population size estimates for 39 species. Years 2005-2014 are represented as 1-10. 
Population size, shown on a log scale to accentuate trends in small populations, is summed across the 
sampled plots in each park, including points not surveyed in every year (e.g., rotating panels). Spurious 
patterns of rapid decline from intermediate to low numbers (e.g., Nashville and MacGillivray’s Warbler in 
MORA, Chipping and Fox Sparrow in OLYM) can result when the model uses data from parks where the 
species is commonly detected to help estimate initial population size in parks where the species is 
detected only rarely. See text for solutions to this problem. 

Appendix 5 summarizes fits to the park-structured model without climate covariates, and provides 
details on the results of fitting components of the detection model to survey covariates (observer, 
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date, time), and of fitting abundance to site covariates in the database (fixed effects of park, fixed and 
random effects of year, park-by-year interactions, and random effects of transect). A potential effect 
was “supported” if its posterior 95% credible interval did not overlap zero, and model fit was 
“adequate” if the Bayesian p-value was not extreme (<0.1 or >0.9) and the Chi-square lack-of-fit 
(LOF) ratio was low (<1.1). Park-by-year interactions generally were not supported as predictors of 
abundance. Within parks, we found little support for effects of day and hour on availability, or for 
effects of observer on perceptibility. Note that due to logistical constraints in the field, observer and 
day are often confounded with park. Adding an observer effect at the regional (three-park) level 
provided little to no improvement in detection model fits.  

In these preliminary models, abundance (N) was estimated only for the area around each point in 
which the species was relatively perceptible, which ranged from 30 m (for Rufous Hummingbird) to 
250 m (Olive-sided Flycatcher). Park-structured estimates of annual variation in population size for 
each of 39 species suggested a variety of dynamics (Fig. 2). Of 117 park-specific trends (3 parks by 
39 species), only 11 suggested pronounced declines, and these declines were not supported in 
posterior predictive checks. These declines were associated only with species detected less than twice 
per park-year, emphasizing the need for caution when fitting models to rare species. Park-structured 
models can overestimate the initial abundance of a species in parks where it was very rarely detected, 
by borrowing too heavily from estimates for parks where the species was more commonly detected. 
To avoid this issue, Ray et al. did not report the trend estimate for a species in any park where its 
average annual count was less than two. Spurious trend estimates for rare species can also be avoided 
by exploiting some of the flexibility of the new modeling framework, as discussed below. 

An estimate of population size at the scale of each stratum was derived by fitting a stratum-specific 
model and extrapolating outside the sampling frame (recalling that our sampling frame was limited to 
~1-2 km from trails). We did this to illustrate whether stratum-specific trends might combine with 
stratum-specific population densities to cause declines (or increases) that could be missed by 
focusing on trends within the surveyed plots. At least some differences in trend among elevational 
strata would be expected if climate change were forcing trends. However, we found that trends in 
population size were usually similar across elevational strata (Fig. 3). Supported trends contrasted 
among elevational strata for only three species (Olive-sided Flycatcher, Western Wood PeeWee and 
Mountain Chickadee), and any other apparent trends were not supported (e.g., Stellar’s Jay, Song 
Sparrow and Black-headed Grosbeak in Fig. 3). In addition, regional trends based on stratum-specific 
fits and stratum-specific densities were similar to those based on only the set of surveyed plots (Fig. 
4). 
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Figure 3. Annual population size estimates for 39 species, organized by elevational stratum (high = 
above 1350 m; low = below 800 m in MORA or 650 m in NOCA and OLYM). Years 2005-2014 are 
represented as 1-10. Population size, shown on a log scale to accentuate trends in small populations, 
was summed across the sampled plots in each stratum (including points not surveyed in every year) and 
extrapolated to the stratum scale based on sampling effort: (N across surveyed plots/total area 
surveyed)*total stratum area = N’, where N’ was the stratum-scale estimate. See text for justification of 
this approach, and Fig. 4 for calculation of regional population size. 
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Figure 4. A comparison of regional trends in estimated population size from two analyses: 1) fitting a 
single, linear effect of year to all data, and not extrapolating trend beyond the surveyed plots (x axis); or 
2) fitting stratum-specific trends followed by extrapolation to the stratum level (Fig. 3) and estimation of 
trend at the regional scale as a weighted average of stratum-level trends, using weights based on the 
geometric mean of annual population size within each stratum (y axis). Positive values (upper right-hand 
quadrant) represent trends that were positive in both analyses. Dots represent mean trends for each of 
the 39 focal species, and error bars represent 95% CIs. One trend in the upper right quadrant, shown in 
red, represents the only species (Warbling Vireo) for which the 95% CI crossed zero in one analysis but 
not the other. Bias due to the sampling design appears minimal. 
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4.0 Implications for future surveys and analysis 
The new analytical framework for estimating landbird trends in the NCCN extends the model of 
Amundson et al. (2014) to accommodate count intervals of varying length (as in Farnsworth et al. 
2002), and to estimate population trends from a time series of annual data. This framework has 
proven quite flexible, accommodating data from the existing point-count protocol as well as variation 
in the protocol over time (e.g., the retirement of several transects and the 2011 change from removal 
counts across two intervals to full counts across three intervals). Using Bayesian analysis and 
MCMC, all missing data are estimated during the modeling process, and we can also obtain a full 
distribution for each estimated value. This means, for example, that data from point-count stations 
visited only once can be incorporated into trend analyses, because any missing counts are estimated 
for every point ever visited using the observed pattern of data from other counts that are not missing. 

We can evaluate parameter estimates at any level (from a missing point-count to a trend across point-
years) using posterior predictive checks that can be as straightforward as comparing an observed 
response with the distribution of predicted responses deriving from the many iterations of the MCMC 
algorithm. At each iteration, model parameters are estimated anew, and a “perfect” dataset (including 
prediction uncertainty) can be sampled from each new fit to create the posterior predictive 
distribution of any fitted parameter. Using this approach, we found that relatively simple models 
were adequate for estimating population trends at park scales and regionally, as long as we detected 
an average of at least two individuals per park-year. Covariate effects were easily incorporated into 
submodels of detection and abundance. Based on these observations and further details provided 
below, continued application of the new modeling framework for population-specific trend analysis 
in the next synthesis of NCCN landbird monitoring data, as well as in syntheses of monitoring data 
from SIEN and other networks should provide a relatively robust alternative to the previously 
envisioned analytical framework of Siegel et al. (2007, 2010). Additional implications of specific 
survey and analysis questions are discussed below. 

Rare species. Estimating trends within the three-park region required more than five detections per 
averaged park-year, and estimating park-specific trends required further that the distribution of the 
population support localized trend analysis by offering at least two detections per year in each park. 
Estimating stratum-specific trends for each elevation band (low, medium and high) will place further 
demands on the data, likely requiring at least two detections per stratum-year. We recommend 
caution when estimating trends for rare species. However, for species that are rare only in certain 
locations (see the examples mentioned in Fig. 2), trends can be estimated in at least three ways. First, 
it is possible within the new framework to constrain initial population estimates where the species is 
rare, to avoid inflated estimates of initial population size in these locations. Second, the Bayesian 
approach explored here can involve the use of an informative prior distribution for the trend 
parameter. For example, prior information indicating species absence from a park might be used to 
justify a more informative prior for the park effect. Third, trend analysis can be limited to data from 
the location where the species is rare, to avoid influence from locations where it is more common. 
These approaches might be useful when trends must be estimated for rare species targeted for 
management.  
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Flocking species. Species detected commonly in flocks do not conform to key assumptions of the 
models presented here, and we are not aware of related models appropriate for species with 
pronounced flocking behavior during the breeding period when point-counts are conducted. Only 
four flocking species were detected commonly enough in NCCN mountain parks to warrant trend 
estimation (Pine Siskin, Red Crossbill, Evening Grosbeak and Vaux’s Swift). For these species, 
occupancy modeling for a spatially structured investigation of trends in presence, rather than 
abundance, would be a useful method for determining species response to habitat and climate. 
Occupancy modeling approaches are well developed and well suited to the data generated by the 
current NCCN landbird monitoring protocol (MacKenzie et al. 2006). 

Covariates of detection. Detection was modeled in two parts, as in Amundson et al. (2014): 
availability was estimated via removal sampling (birds detected earlier are presumably more 
available for detection), and perceptibility was estimated via distance sampling (birds detected at 
greater distances are presumably more perceptible). Within parks, we found little support for effects 
of day and hour on availability, or for effects of observer on perceptibility. Observer and day were 
often confounded with park in the data analyzed, because logistical constraints dictate that parks 
must be visited sequentially or by different observers. Adding an observer effect at the regional level 
resulted in little improvement over an intercept-only model for most species. Similarly, binning 
detections by distance rather than by frequency had no appreciable effect on parameter estimates or 
model fit for most species. For the minority of species with poor fit to the detection models 
summarized here, further exploration of detection models based on habitat covariates, week and year 
would be useful, as well as exploration of different functional relationships between detection and 
distance (characterized here by the half-normal distribution, the most common approach in the 
literature). Reducing variation in distance estimates through observer training in the field should 
continue to be emphasized. Distance estimation in steep mountain terrain with complex multilayered 
canopies extending up to 70 meters high can produce highly variable outcomes (Buckland et al. 
2001), especially when compared to ecosystems with less structural complexity, such as shrub-
steppe.  

Imperfect detection at zero distance. Although distance-sampling methods can reduce bias 
associated with imperfect detection, an important assumption of many distance-sampling models is 
perfect detection at zero distance. This assumption may not hold in avian point-count studies due to 
observer effects on bird behavior or because birds may be concealed in the forest canopy overhead; 
in our study, canopy layers can extend 75 m above the observer. Fortunately, the assumption of 
perfect detection at zero distance is obviated in models that incorporate information on both detection 
time and detection distance (Amundson et al. 2014). Collecting data on detection distance and time is 
straightforward for point counts, and is broadly encouraged by the research community (Twedt 
2015).  

Model assumptions. Assumptions that continue to require attention in N-mixture models include (1) 
random placement of survey points with respect to the population’s distribution; (2) detection of 
individuals prior to any movement; (3) accurate estimation of distance to detection; (4) accurate 
identification of species and unique individuals; (5) independence between probabilities of individual 
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availability and perceptibility; (6) closure, defined as lack of birth, death, immigration and 
emigration during each survey season; and (7) presence of the entire breeding population during each 
survey season. Observer training and careful design of survey protocols and analyses can help meet 
these assumptions (Amundson et al. 2014). For example, after censoring 10% of detections—those at 
the greatest distances (Kéry and Royle 2016)—we found little evidence of rounding error (clumping) 
in estimates of dispersal distance. Still, analysis of variance sometimes indicated significant 
dependence between distance- and time-to-detection, suggesting violation of (5). In these cases, we 
censored up to 27% (mean = 11%) of detections to avoid significant dependence between detection 
interval and distance. For several species, we explored the effect of censor rate on estimates of 
population density; in agreement with Amundson et al. (2014), we found little effect. However, 
assumptions (2), (6) and (7) may be more difficult to meet (Alldredge et al. 2007, Simons et al. 2009, 
Hoekman and Lindberg 2012, Schmidt et al. 2013, Mizel et al. 2017). The timing of arrival on the 
breeding grounds and the duration of peak singing rates can vary importantly across the breeding 
season (Mizel et al. 2017). Studies like ours, that include no more than one annual visit to each point, 
cannot directly estimate this source of variation. Although we found little support for an effect of 
date (day-of-year) on availability, trends in arrival date and availability during the breeding season 
can be confounded with trends in abundance in single-visit studies (Schmidt et al. 2013). Thus, it is 
conceivable that a decline in abundance could be countered and masked by a trend in arrival times 
that increased detectability during our point counts. We found no trends in our two metrics of 
breeding-season climate, but it will be important to investigate other potentially influential aspects of 
climate that these populations encounter throughout the year. Finally, the fact that we found little 
support for an effect of day on availability might be due to the fact that availability was generally 
quite high among our focal species, such that there was little remnant variance for covariates to 
explain. In contrast, our estimates of perceptibility were lower, and fit was poor in our sub-model of 
perceptibility for about ¼ of the species modeled, as discussed above. For similar analyses in the 
future, such as the 2017 synthesis report on population trends in the NCCN, we suggest further 
exploration of distance model assumptions, guided by previous studies that have characterized 
important departures from model assumptions (Simons et al. 2009, Hoekman and Lindberg 2012). 
Further exploration of covariates or of alternatives to the half-normal distribution commonly used to 
characterize the decline in detection with distance might also be fruitful. Alternative detection-
distance functions might better capture any effects of distance on detection that might be peculiar to 
this study.  

Missing data. Our time series provided a substantial test of whether the new framework can 
accommodate spatial and temporal variability in survey effort (missing data), an important 
component of many point-count surveys. Data were missing in each year for the vast majority of 
points in this dataset, primarily because only two out of every six panels are surveyed annually 
(Table 1 of Ray et al. in Appendix 1). However, as exemplified in Kéry and Royle (2016), missing 
data are conveniently estimated in this type of analysis. Parameter estimates for the more common 
species were surprisingly precise—e.g., credible intervals in Fig. 3 of Ray et al. were often quite 
narrow—despite the massive amounts of missing data modeled explicitly in our analyses.  
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If sampling effort were to be deliberately reduced relative to the current protocol, the credible 
interval for each parameter estimate would become wider. For some species, especially those that are 
relatively rare, credible intervals are already quite wide for certain parameter estimates (Figs. 4 and 6 
of Ray et al. in Appendix 1). Hence, any reduction in sampling effort would affect the power of trend 
detection, and any reduction in the number of parks sampled would restrict formal inference to the 
remaining sampled parks. If it became necessary to remove a whole park from the monitoring 
protocol, retaining North Cascades National Park Complex (NOCA) could perhaps retain the most 
information for the network, because species trends in NOCA were most representative of trends 
across the three-park region (Fig. S1 of Ray et al.). If a reduction in annual effort were necessary, 
dropping whole years from the survey, rather than dropping selected transects within years, would 
maintain the integrity of the survey design and could avoid or minimize an increase in estimation 
error within the remaining survey years. However, dropping all point-counts from a given year could 
reduce our ability to detect effects of time-varying covariates like climate. In this case, instituting a 
rotating design for whole parks would allow for some continuity across the NCCN in the sampling of 
such covariates. 

Covariates of abundance. We estimated effects of lagged climate on abundance to exemplify model 
construction based on covariates. Effects of habitat covariates such as tree density would be 
estimated in the same way. Anticipating declines in the Rufous Hummingbird and Olive-sided 
Flycatcher, we expected that a discussion of habitat covariates might be especially useful for these 
species. However, trends estimated for these and many other species were stable at the regional scale, 
with any park-scale declines offset by increases or at least stability in other parks (Fig. 4 of Ray et al. 
in Appendix 1). A notable exception was Clark’s Nutcracker (CLNU), which appeared to have 
declined sharply in MORA without any appreciable offset elsewhere. CLNU habitat occurred 
primarily in MORA and NOCA at high elevations in open areas (Appendix 2, Figs. A2.1 and A2.5). 
In exploratory analyses featuring univariate models, we identified a negative, lag-1 effect of 
increasing precipitation-as-snow on CLNU counts from each point-year (Fig. A2.6), but that effect 
was not supported after accounting for trend, park and transect effects (Fig. 7 of Ray et al. in 
Appendix 1). Given the noted geographical and evolutionary association between CLNU and cone-
bearing whitebark pines (Tomback 1982, Tomback and Linhart 1990, Lanner 1996, McKinney et al. 
2009, Barringer et al. 2012), an obvious potential covariate of CLNU density would be the density of 
this primary food source. The collection and certification of park data on whitebark pines and other 
white pines that might serve as resources for CLNU is currently underway in both NCCN and SIEN 
(McKinney et al. 2012). Our preliminary modeling of climate effects on CLNU density demonstrate 
the potential for modeling CLNU density as a function of foraging habitat, using the new modeling 
framework to estimate trophic effects on landbird species dynamics. Estimating the specific effect of 
cone-bearing whitebark pine density on CLNU density in NCCN parks awaits certification of the 
pine dataset (J. Boetsch, pers. comm.), but a temporal model appears feasible given the upcoming 
availability of a time-series of whitebark pine surveys in 2004, 2009 and 2015-2016. Recalling the 
capacity for handling missing data in the new analytical framework, the gaps in temporal data should 
not be problematic. However, there may be a lack of spatial correspondence between CLNU and 
whitebark sampling locations, which suggests that data from the covariate and the response should be 
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aggregated spatially prior to analysis, restricting inference regarding the spatial pattern of habitat use 
by CLNU. 

Inference at park and regional levels. Trend estimates can be biased by variations in total area 
among parks and elevational strata. Although effects of park, transect and year were modeled, and 
sampling was relatively intensive and well-distributed among parks and elevations each year (see 
Table 1 in Ray et al.), parameter estimates should also account for variations in sampling density. For 
the 2017 synthesis report, weighting stratum-level parameter estimates by stratum area (Link and 
Sauer 2002, 2011) will minimize potential bias in trends at the park level. Similarly, regional trends 
can be estimated from park-level trends weighted by park area. Accounting for variation in sampling 
density among elevational strata and parks will be important for making specific inferences regarding 
park resources and regional trends. 

Bias and precision. Bias and precision in parameter estimates from point-count studies are 
influenced by joint effects of mean species abundance, detection probability, the number of points 
surveyed and the number of counts within a season at a point (here, the number of count intervals 
during the single annual visit to a point). Lower values for any of these quantities lead to higher bias 
and lower precision (Yamaura et al. 2016). As in many avian point-count studies, both detectability 
and mean population density were low for many species in our study. However, the number of points 
surveyed and the effective number of counts per point in our study were high enough to ensure low 
bias and high precision in simulations by Yamaura et al. (2016). Furthermore, our estimates of 
population density, climate effects, park effects, year effects, and the parameters controlling 
components of detection were robust to variations in model structure to account for regional or park-
specific trends and effects of climate. These patterns should be revisited in the 2017 synthesis report, 
when data on variation in sampling density among parks and elevational strata will be used to 
estimate stratum-specific and park-wide parameters. 

Bayesian meta-analysis of mean parameter estimates by species group. The analytical framework 
developed here results in fitted models of population dynamics for individual species. Understanding 
broader ecological patterns and managing multi-species groups will require aggregating results 
across species. Mean parameter estimates across species or trait groups can be quantified using 
Bayesian meta-analysis (sensu Kéry and Royle 2016, pp. 680-683), a two-step hierarchical analysis 
to account for uncertainty in parameter estimates for individual species (Sauer and Link 2002). 
Example code for a meta-analysis of the average response to mean spring temperature, grouped by 
nesting habit, is provided in Appendix 6. The need for meta-analysis to estimate parameters by 
species trait-group is evident in Fig. 5, which contrasts two ways of summarizing the (estimated) 
effect of temperature on species groups: 1) boxplots of point estimates for each species, and 2) means 
(filled points) and 95% CIs (shaded areas) for each group as estimated by Bayesian meta-analysis. 
The boxplots suggest that mean spring temperature has a negative impact only on ground-nesting 
species. In contrast, results from the meta-analysis suggest that mean spring temperature has no 
impact on ground-nesters, but has a positive impact on species that do not nest on the ground. 
Bayesian hierarchical methods provide a convenient analytical framework for propagating 
uncertainty among levels of analysis. Thus, the credible intervals generated by Bayesian meta-
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analysis in Fig. 5 provide more appropriate statistical support for inference concerning the effect of 
MST. However, we must again caution that the nature of the effect of MST is not entirely clear from 
data based on single-visit studies; MST might affect the actual abundance of non-ground-nesting 
birds, or it might affect the timing of their arrival (and availability for detection) on the breeding 
grounds (see examples in Mizel et al. 2017). 

 
Figure 5. Parameter estimates grouped by nesting habit. Boxplots summarize point estimates of the 
effect of mean spring temperature (MST) on each species. Filled points (means) and shaded areas (95% 
CIs) summarize the average response to MST across species according to a Bayesian meta-analysis, 
which propagates the uncertainty in point estimates to higher level statistics such as species-group 
means. 
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Summary 
Employing methods in hierarchical modeling of population and community processes will improve 
our ability to extract meaningful parameter estimates from diverse datasets (Tingley and Beissinger 
2013). Combining data on detection distance and time increases the flexibility and utility of models 
designed to estimate abundance (Amundson et al. 2014). Given within-season replication of counts, 
as in the NCCN landbird monitoring protocol and others, this analytical framework can be extended 
to model apparent survival, recruitment and turnover (Dail and Madsen 2011, 2013) to support 
diverse population management goals. 
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Appendix 1: R script for processing data queried from the 
NCCN landbird monitoring database.  
# Process query data for use in hierarchical models 
 
# Code file name “script4processingQueryData.R” available from C. Ray 
(cray@birdpop.org) 
 
# Reads the .csv output from two queries, "qs_a121..." (containing survey data) and  
# "qs_a204..." (containing point data); addresses issues in these data (see below); 
# writes clean/corrected survey and point data to .csv files 
 
# Some of the survey and point data overlap and are processed twice, just so that we 
# can write clean, separate copies of survey and point data to file 
 
# Specifically: 
# Format survey data derived from query qs_a121... w/one record for every yr/pt/sp: 
# - convert blanks in Int_5_7 and Int_3_5 to "0" AFTER 2010, "NA" BEFORE 2011 
# - change "-1"s in Int_3_5 and Int_5_7 to "1"s (-1 was db code for sp detection) 
# - for all records w/Species=NONE, set blanks in Obs_distance_m to "NA" 
# - for transect 1057 (replaced 1030), set Panel_type to "Alternating" and 
#     set Panel_name to "3" 
# - for transect 3131 (retired), set Panel_type to "Annual" and Panel_name to "1" 
# - for Start_date, translate the formatted date (5/25/2005 0:00) into ordinal Day 
# - for Start_time, translate the formatted time (12/30/1899 7:57:00) into Hour 
# - create removal data from interval data (Int_0_3, Int_3_5, Int_5_7) 
# - for Habitat_num=blank, make PMR_type_desc, Detection_class & Is_forested "NA" 
# - delete the Flyover column (contains no info--query qs_a121 specifies Flyover=0) 
# - remove leading zeros on some pts in q1$Location_code 
# - handle records for which Nearest_obs=FALSE/0 
# - write nice survey data to .csv file 
# Format point data (data derived from query qs_a204...one record for every pt/yr): 
# - remove transect-origin points 
# - distribute "best" coords and GIS covars for pt "x" to each yr of data for pt "x" 
# - for transect 1057 (replaced 1030), set Panel_type to "Alternating" and  
#     set Panel_name to “3” 
# - for transect 3131 (retired), set Panel_type to "Annual" and Panel_name to "1" 
# - transfer pt covars from qs_a121 to the point data file and trim redundant columns 
# - distribute "Stratum_name" for pt "x" to each yr of data for pt "x" 
# - write nice point data to .csv file 
# - merge survey data with point data; preserves pts lost when removing Nearest_obs=F 
# - write nice merged file to .csv 
# - re-focus survey data onto the focal species (e.g., set Group_size=0 for other spp) 
 
require(dplyr)  
 
#***SEARCH FOR "***" TO FIND ANY LINES THAT MUST BE CUSTOMIZED FOR SPECIFIC ANALYSES 
 
# Format survey data derived from query qs_a121... w/one record for every yr/pt/sp: 
 
NAs <- c(""," ",".","  ","..","na","NA","-") 
 
#*** update file name as needed 
q1 <- read.csv("qs_a121_Distance_export_matrix_20151023_173639.csv",header=T, 
                 na.strings=NAs) 
names(q1); dim(q1) 
 
# - convert blanks in Int_5_7 and Int_3_5 to "0" AFTER 2010, "NA" BEFORE 2011 
 
#there are blanks for every non-detection in the 2-interval, removal-sampling before 
#2011, and blanks for Int_3_5 and Int_5_7 whenever Species=NONE after 2010; so... 
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i <- which(q1$Event_year<2011); length(i) #checking numbers, throughout 
q1[i,"Int_5_7"] <- NA #because Int_5_7 wasn't implemented until 2011 
i <- which(q1$Event_year>2010&(is.na(q1$Int_5_7)|is.na(q1$Int_3_5))); length(i) 
j <- which(names(q1)=="Int_5_7"|names(q1)=="Int_3_5"); j 
q1[i,j] <- 0 #next line just checks whether Int_3_5 NAs < Int_5_7 NAs, as expected 
i <- which(is.na(q1$Int_3_5&q1$Event_year<2011)); length(i)  
 
# - change "-1"s in Int_3_5 and Int_5_7 to "1"s (-1 was db code for sp detection) 
 
i <- which(q1[,"Int_3_5"]==(-1)); length(i) 
q1[i,"Int_3_5"] <- 1  
i <- which(q1[,"Int_5_7"]==(-1)); length(i) #Int_5_7 -1s < Int_3_5 -1s, as expected 
q1[i,"Int_5_7"] <- 1  
 
# - for all records w/Species=NONE, set blanks in Obs_distance_m to "NA" 
 
i <- which(q1[,"Species"]=="NONE"); length(i) 
q1[i,"Obs_distance_m"] #all should be "NA" 
sum(is.na(q1$Obs_distance_m)) #should be >= i 
 
# - for transect 1057 (replaced 1030), set Panel_type...and Panel_name... 
 
i <- which(q1$Site_code==1057); i #checking that this is a coherent group of records 
q1[i,"Panel_type"] <- "Alternating" 
q1[i,"Panel_name"] <- 3 #because transect 1057 is in panel 3 
q1[i,c("Site_code","Location_code","Event_year","Panel_type","Panel_name")] 
 
# - for transect 3131 (retired), set Panel_type to "Annual" and Panel_name to "1" 
 
i <- which(q1$Site_code==3131); i 
q1[i,"Panel_type"] <- "Annual" 
q1[i,"Panel_name"] <- 1 
q1[i,c("Site_code","Location_code","Event_year","Panel_type","Panel_name")] 
 
# - for Start_date, translate the formatted date (5/25/2005 0:00) into ordinal Day 
 
odate <- strptime(q1$Start_date,format="%m/%d/%Y %H:%M",tz="America/Los_Angeles"); 
head(odate) 
rdate <- strptime(odate,format="%Y-%m-%d",tz="America/Los_Angeles"); head(rdate) 
#check readout 
rdate <- as.POSIXlt(odate) #put record date into a useful format 
hist(rdate$yday) #check distribution of ordinal/Julian date 
Day <- rdate$yday #bind to q1 
q1$Start_date <- as.character(rdate); head(q1$Start_date) 
q1 <- data.frame(q1,Day); names(q1) 
 
# - for Start_time, translate the formatted time (12/30/1899 7:57:00) into Hour 
 
otime <- strptime(q1$Start_time,format="%m/%d/%Y %H:%M:%S",tz="America/Los_Angeles"); 
head(otime) 
#the default date gives us the wrong time-zone (daylight savings), but that won't 
matter 
#after we standardize covars 
rtime <- strptime(otime,format="%Y-%m-%d %H:%M:%S",tz="America/Los_Angeles"); 
head(rtime) 
rtime <- as.POSIXlt(otime,tz="America/Los_Angeles") 
hist(rtime$hour) #check distribution of hour 
Hour <- rtime$hour #bind to q1 
q1$Start_time <- sub("1899-12-30 ","",rtime) 
q1 <- data.frame(q1,Hour); names(q1) 
 
# - for Habitat_num=blank, make PMR_type_desc, Detection_class & Is_forested "NA" 
 



 

26 
 

i <- which(is.na(q1$Habitat_num)); length(i) 
j <- which(is.na(q1$PMR_type_desc)); length(j) #if i & j are equal, good 
j <- which(is.na(q1$Is_forested)); length(j) #if length(i) > length(j), bad 
#Currently, Is_forested defaults to 0 instead of blank/NA in the db 
if (length(i) > length(j)) q1[i,"Is_forested"] <- NA 
q1[i,c("PMR_type_desc","Detection_class","Is_forested","Habitat_num")] #view context 
 
# - delete the Flyover column (contains no info--query qs_a121 specifies Flyover=0) 
 
j <- which(names(q1)=="Flyover"); j 
q1 <- q1[,-j]; names(q1) 
 
# - handle records for which Nearest_obs=FALSE/0 
 
i <- which(q1$Nearest_obs==F); length(i); dim(q1) #~3% of records are Nearest_obs=0 
q1$Species[i] <- NA #record is retained but will never be counted as a focal sp 
#avoid omitting records; creates problems if Nearest_obs=0 for the only  
#bird(s) detected 
j <- which(names(q1)=="Nearest_obs"); j #remove Nearest_obs from data frame 
q1 <- q1[,-j]; dim(q1) 
 
# - create removal data from interval data (Int_0_3, Int_3_5, Int_5_7) 
 
get.first <- function(x) min(which(x!=0),na.rm=T) #finds first detection interval  
                                                  #for record x 
j <- which(names(q1)=="Int_0_3"); j #1st of 3 cols of interval data 
y <- as.matrix(q1[,j:(j+2)]); levels(as.factor(y)) #interval data = 0, 1 or NA 
f <- apply(y,1,get.first) #ignore warnings; create vector f, first occasions  
                          #of detection 
yi <- matrix(0,nrow=dim(y)[1],ncol=dim(y)[2]) #use f to recreate y 
for (i in 1:dim(y)[1]) { if (q1$Group_size[i] > 0) yi[i,f[i]] <- 1 }; head(yi)  
yi[q1$Event_year<2011,3] <- NA #3rd interval not implemented until 2011 
colnames(yi) <- c("y1","y2","y3") 
head(yi); tail(yi); sum(yi[,1:3],na.rm=T) 
q1 <- data.frame(q1,yi); names(q1) 
 
# - remove leading zeros on some pts in q1$Location_code 
 
q1[,"Location_code"] <- sub("^[0]+", "", q1[,"Location_code"]) 
 
# - write nice survey data to .csv file 
 
#*** update file name as needed 
write.csv(q1,file="nccn.survey.data.2005to2014.csv") 
 
 
# Format point data derived from query qs_a204...w/one record for every pt/yr: 
 
#*** update file name as needed 
q2 <- read.csv("qs_a204_Transect_coordinates_export_20151117_164321.csv",header=T) 
 
# - remove transect-origin points 
 
i <- which(q2$Location_code=="TO"); length(i) #~years*x, where x is the number of TOs 
q2 <- q2[-i,]; dim(q2) #~years*y, where y is the number of pts, many alternating 
 
# - distribute "best" coords and GIS-derived covars for pt "x" to each yr of data for 
pt "x" 
 
#i.e., replace coords collected annually, and covars derived from coords annually, 
#with "best" coords, elev, slope and aspect 
names(q2) #look at pt covars to see which covars to keep 
q2.trim <- q2[,c(1:8)] #keep core data 
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ptbest <- q2[q2$Is_best==1,c(5,6,13,15:19)] #keep best coords for ea pt 
dim(q2.trim); names(q2.trim); dim(ptbest); names(ptbest) 
q2 <- merge(q2.trim,ptbest,all=T); dim(q2) #distrib best to ea pt-yr 
 
# - for transects 1057 & 3131, set appropriate Panel_type and Panel_name 
 
j <- which(names(q2)=="Panel_type"); j 
q2[q2$Site_code==1057,j] <- "Alternating" 
q2[q2$Site_code==3131,j] <- "Annual" 
j <- which(names(q2)=="Panel_name"); j 
q2[q2$Site_code==1057,j] <- 3 
q2[q2$Site_code==3131,j] <- 1 
 
# - transfer pt covars from qs_a121 to the point data file and trim redundant columns 
 
#divvy q1 data between pt data and survey data 
#note: for the Amundson-type model I ended up merging these back together 
names(q2); names(q1) #determine which q1 columns should be in q2 
pt.d <- unique(q1[,c(1,4,6,7,12:15)]); names(pt.d); dim(pt.d) #store pt data from q1 
sv.d <- q1[,c(4,6,7,11,16:25)]; names(sv.d); dim(sv.d) #store survey data from q1 
 
#verify that all pt-yr records in q2 have counterparts in pt.d (q1) 
names(q2); dim(q2); names(pt.d); dim(pt.d) #if dims aren't equal, fix 
 
#before looking at which rows in q2 don't occur in pt.d, note that q2$Location_code 
#includes leading zeros on some pts, while pt.d$Location_code USUALLY doesn't,  
#and fix as follows: 
q2[,"Location_code"] <- sub("^[0]+", "", q2[,"Location_code"]) #fixes most 
pt.d[,"Location_code"] <- sub("^[0]+", "", pt.d[,"Location_code"]) #fixes more 
mismatch <- anti_join(q2,pt.d); dim(mismatch) #rows of q2/qs_a204 not in pt.d/qs_a121 
head(mismatch[order(mismatch$Site_code),]) 
o.mis <- mismatch[order(mismatch$Site_code),] 
o.mis[7:12,] #work through examples to understand patterns 
o.mis[13:18,] 
tail(o.mis) 
 
#pattern: if a pt-yr was missing from qs_a101 but occurred in qs_a204 w/yr-specific 
#coords (suggesting it was visited), maybe snow or noise or something precluded the 
#survey; this issue is addressed by merging q2 with pt.d 
mismatch2 <- anti_join(pt.d,q2); dim(mismatch2) #checking for rows of pt.d not in q2 
 
#merge pt data from pt and survey data files 
siteData <- left_join(q2,pt.d,by=c("Event_year","Site_code","Location_code")) 
head(siteData); dim(siteData)  
nas <- apply(siteData,2,function(x) sum(is.na(x))); nas #checking number of NAs 
sum(siteData$Park_code=="LEWI"|siteData$Park_code=="SJHS") #explaining Panel_name NAs 
 
#because NAs in Stratum_name are a special problem, check: 
siteData[is.na(siteData$Stratum_name),1:8] #look at the records w/NA in Stratum_name 
nas <- apply(q2,2,function(x) sum(is.na(x))); nas #NAs from pt data... 
nas <- apply(pt.d,2,function(x) sum(is.na(x))); nas #NAs from survey data 
 
# - distribute "Stratum_name" for pt "x" to each yr of data for pt "x" 
 
a <- q1[!is.na(q1$Stratum_name),c("Stratum_name","Site_code","Location_code")] 
a <- unique(a); head(a); dim(a) #Stratum_name associated w/each pt;  
                                #dim(ptbest) may differ! 
a[,"Location_code"] <- sub("^[0]+", "",a[,"Location_code"]) #omits leading zeros 
a <- left_join(siteData,a,by=c("Site_code","Location_code")); names(a) 
sum(is.na(a$Stratum_name.x)); sum(is.na(a$Stratum_name.y)) 
a[is.na(a$Stratum_name.y),] #ptbest w/o Stratum_name 
 
#if we're still missing Stratum_name for some pts, fix as follows: pts w/in a  
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#transect share a stratum, so find those other pts & assign shared Stratum_name  
for (i in which(is.na(a$Stratum_name.y))) {  
  j <- which(a$Site_code==a$Site_code[i]) #indexes all pts w/in this transect 
  a[i,"Stratum_name.y"] <- levels(droplevels(a[j,"Stratum_name.y"])) #shared name 
} 
sum(is.na(a$Stratum_name.x)); sum(is.na(a$Stratum_name.y)) #check that NAs are gone 
siteData <- a[,-which(names(a)=="Stratum_name.x")]; names(siteData) #restore df 
names(siteData)[dim(siteData)[2]] <- "Stratum_name"; names(siteData) 
 
# - write nice point data to .csv file 
 
#*** update file name as needed 
write.csv(siteData,file="nccn.site.data.2005to2014.csv") 
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Appendix 2: Exploration of Clark’s Nutcracker (CLNU) data 
from three mountain parks in the NCCN: Mount Rainier 
(MORA), North Cascades (NOCA) and Olympic (OLYM).  
Raw and effort-adjusted counts were related to potential covariates prior to modeling detection-
adjusted trends. 

 
Figure A2.1. Association plots showing raw counts by park (upper left) and by elevational stratum across 
parks (upper right and lower left). Upper plot titles report the significance (p-value at α = 0.05 by ANOVA) 
of variance in raw counts explained by each predictor variable.  
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Figure A2.2. Association plots relating CLNU point-level detection interval (based on time-of-detection) to 
hour of day (upper left) and detection distance (lower left), where plot titles report the significance of 
variance in raw counts explained by each predictor variable (p-value at α = 0.05 by ANOVA). Detections 
per time interval are also shown (upper right). 
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Figure A2.3. CLNU detections by distance (upper left) and by variable distance class (other panels) after 
truncating the most distant 10% of detections (> 215 meters from the observer) and equalizing the 
number of detections in each class. Detections per metric of area are explored in the lower panels. 
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Figure A2.4. CLNU raw counts (left) and effort-adjusted counts (right) for each year 2005-2014 (shown 
here as year 1-10 of NCCN landbird monitoring), differentiated by park. Note that raw total counts do not 
approach Ray et al. estimates of Np (where p is detection probability) because N in Ray et al. includes 
estimates for points that were not surveyed each year (e.g., alternating panels). 
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Figure A2.5. Poisson regression of CLNU counts, adjusted for effort within each park-year, on year of 
landbird monitoring in the NCCN. The slight slope of the negative trend over time (red line) is difficult to 
detect but garnered much more support than the null model (p = 0 and ΔAIC >> 7 with respect to the null 
model). Points were jittered for display by adding a small, random value to reduce overlap. 
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Figure A2.6. CLNU detection interval by day (upper left), hour (upper right), forest presence (lower left) 
and presence of dense cover (lower right). Results of Poisson regression appear in red; in each case, P > 
0.05 and ΔAIC < 2 with respect to the null model, so none of these effects on detection interval gained 
support. Points were jittered for display by adding a small, random value to reduce overlap. 
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Figure A2.7. CLNU detection distance by forest presence (left) and presence of dense cover (right). 
Results of Poisson regression appear in red; in each case, p > 0.05 and ΔAIC < 2 with respect to the null 
model, so these effects on detection distance were not supported. Points were jittered for display by 
adding a small, random value to reduce overlap. 

 
Figure A2.8. CLNU count by transformed aspect (left) untransformed aspect (right). Transformed aspect 
ranged from zero toward the southwest to 2 toward the northwest. Results of Poisson regression appear 
in red; p > 0.05 and ΔAIC < 2 with respect to the null model, so an effect of aspect on count was not 
supported. Points were jittered for display by adding a small, random value to reduce overlap. 
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Figure A2.9. CLNU counts summed across parks ranged from zero (n = 8270) to 7 (n = 1) for each point-
year (upper left) and were related to noise level during the count (upper right), hour of day (lower right) 
and day of the year (lower left) during 2005-2014. Each Poisson regression (in red) garnered more 
support than the null model (ΔAIC > 4). Points were jittered for display by adding a small, random value to 
reduce overlap. 
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Figure A2.10. Association plots relating CLNU point-level occupancy to forest presence (upper left) and 
presence of dense cover (upper right), where plot titles report the significance of variance in raw counts 
explained by each predictor variable (p-value at α = 0.05 by ANOVA). Poisson regression of counts on 
elevation (lower left) and slope (lower right) were also supported more than the null model (p < 0.05 and 
ΔAIC > 4). Points were jittered for display by adding a small, random value to reduce overlap. 
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FigureA2.11. CLNU counts declined with increasing lag-1 precipitation-as-snow (left; p < 0.05, ΔAIC > 7) 
but did not reflect a univariate effect of lag-1 mean spring temperature (right; p > 0.05, ΔAIC < 2). To 
better display the slopes of these Poisson regressions, graphs were truncated at counts of 4; maximum 
count was 7. Points were jittered for display by adding a small, random value to reduce overlap. 
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Appendix 3: Query protocol and R script for accessing and 
formatting data from ClimateWNA 
Prior to running the script below, access ClimateWNA at http://www.climatewna.com and copy the 
following files and folders into a single folder/working directory: files ClimateWNA 
_v*.**.exe and help.rtf, and folders Prismdat, Perioddat and GCMdat. Next, prepare 
a .csv file containing data on point locations in the following format: 

Park_code Site_code Location_code UTM_east UTM_north 
MORA  4001  NN01   583207 5176809 
MORA  4001  NN02   583226 5177033 
MORA  4001  NN02a   583195.7 5177015 
… 

 
Running the first few lines of the script below will convert your .csv file above into an input file 
compatible with ClimateWNA, as: 

ID1  ID2  Latitude Longitude Elevation 
4001 NN01  46.73965 -121.911 . 
4001 NN02  46.74166 -121.911 . 
4001 NN02a  46.7415 -121.911 . 
… 

 
After preparing a compatible input file as shown above, ClimateWNA can be queried as follows for 
data on means and normals: Open/run the executable file ClimateWNA_v*.**.exe. Click on 
“Select input file” to input your data formatted “ID1, ID2, …” Click on “Specify output file” to 
specify your output folder and file. Finally, click on “Calculate” to have data appended to your input 
file (as additional columns) and printed to your output file. If your input file includes elevations, the 
output climate data will be adjusted for elevation. For a time series of climate data, query as follows: 
Select “Time Series” (for historical years) or select a future time series in the period section drop 
box. Select a variable category (monthly, seasonal, annual or all variables). Input the starting and 
ending years in the pop-up boxes. Specify input and output files, and click the “Calculate TS” button. 
Again, everything is appended to your input file. The script below then reads your appended output, 
formats the data for use in models, and visualizes the data for review. 

# Script for accessing and exploring ClimateWNA data 
 
# Code file name “script4climateData.R” available from C. Ray (cray@birdpop.org) 
 
# create input file compatible with ClimateWNA 
 
require(rgdal) 
# prepare UTM coordinates matrix 
nccn.pts <- read.csv("nccn.pts.csv") 
nccn.utm <- 
SpatialPoints(cbind(nccn.pts$UTM_east,nccn.pts$UTM_north),proj4string=CRS("+proj=utm 
+zone=10")) 

http://www.climatewna.com/
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# convert UTM to lon-lat 
nccn.lonlat <- spTransform(nccn.utm, CRS("+proj=longlat")) 
# prepare as input for ClimateWNA_v5.21 
nccn.covars.wna.pts <- data.frame(ID1 = nccn.pts$Site_code, ID2 = 
nccn.pts$Location_code, lat = nccn.lonlat$coords.x2, long = nccn.lonlat$coords.x1, el 
= ".") 
write.csv(nccn.covars.wna.pts, "nccn.wna.pts.csv", row.names=F) 
 
# read ClimateWNA_v5.21 output (for example, 2005-2013 data) 
 
clim <- read.csv("nccn.wna.pts_2005-2013MSYT.csv") 
# add labels  
nccn.pts <- read.csv("nccn.pts.csv") 
clim$Park_code <- rep(nccn.pts$Park_code, 1) 
clim <- clim[,c(ncol(clim), 1:ncol(clim)-1)] 
names(clim)[3:4] <- c("Site_code", "Location_code") 
 
# view some "30-yr normal" data for some reference periods 
 
norm61 <- read.csv("nccn.wna.pts_Normal_1961_1990MSY.csv")  
norm61$Park_code <- nccn.pts$Park_code # add a Park_code column, last 
norm61 <- norm61[,c(ncol(norm61),1:ncol(norm61)-1)] # rearrange cols 
names(norm61)[2:3] <- c("Site_code", "Location_code") 
norm71 <- read.csv("nccn.wna.pts_Normal_1971_2000.csv") 
norm71$Park_code <- nccn.pts$Park_code 
norm71 <- norm71[,c(ncol(norm71), 1:ncol(norm71)-1)] 
names(norm71)[2:3] <- c("Site_code", "Location_code") 
ppi <- 300 
#jpeg("norm61vs71-PAS.jpg", width=6*ppi, height=6*ppi, res=ppi) 
layout(matrix(c(1,2), 1, 2, byrow = FALSE)) # 2 panels 
boxplot(norm61$PAS~norm61$Park_code,cex.lab=1.15,ylim=c(0,2500), 
        ylab="Precipitation as snow (mm, Aug[t-1]-Jul[t])", 
        main="PAS 1961-1990 normals",las=3) 
text(3,2500,paste("mean(NOCA) =", 
     round(mean(norm61$PAS[norm61$Park_code=="NOCA"])))) 
boxplot(norm71$PAS~norm71$Park_code,cex.lab=1.15,ylim=c(0,2500), 
        ylab="Precipitation as snow (mm, Aug[t-1]-Jul[t])", 
        main="PAS 1971-2000 normals",las=3) 
text(3,2500,paste("mean(NOCA) =", 
     round(mean(norm71$PAS[norm71$Park_code=="NOCA"])))) 
#dev.off() 
#jpeg("norm61vs71-MST.jpg", width=6*ppi, height=6*ppi, res=ppi) 
boxplot(norm61$Tave_sp~norm61$Park_code,cex.lab=1.15,ylim=c(-2,10), 
        ylab="Mean spring temperature (Mar-May)", 
        main="MST 1961-1990 normals",las=3) 
text(3,10,paste("mean(NOCA) =", 
     round(mean(norm61$Tave_sp[norm61$Park_code=="NOCA"]),1))) 
boxplot(norm71$Tave_sp~norm71$Park_code,cex.lab=1.15,ylim=c(-2,10), 
        ylab="Mean spring temperature (Mar-May)", 
        main="MST 1971-2000 normals",las=3) 
text(3,10,paste("mean(NOCA) =", 
     round(mean(norm71$Tave_sp[norm71$Park_code=="NOCA"]),1))) 
#dev.off() 
 
# subtract 1971-2000 normals from 2005-2013 data for PAS and MST 
 
require(dplyr) 
c <- left_join(clim[,c(1:7,185,248)],norm71[,c(1:6,184,247)], 
               by=c("Park_code","Site_code","Location_code", 
                    "Latitude","Longitude","Elevation")) 
names(c) 
names(c)[8:11] <- c("MST","PAS","MSTnorm","PASnorm") 
c <- cbind(c,c$MST-c$MSTnorm,c$PAS-c$PASnorm) 
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names(c)[12:13] <- c("anomMST","anomPAS") 
 
# create new mtn-park dataset 
 
i <- c$Park_code=="MORA"|c$Park_code=="NOCA"|c$Park_code=="OLYM" 
data <- c[i,c("Year","Park_code","Site_code","Location_code", 
              "anomMST","anomPAS")] 
names(data)[1] <- "Event_year" 
head(data); dim(data) 
 
# write data to file 
 
write.csv(data,file="nccn.climate.data.2005-2013.csv") 
 
# explore distribution 
 
anomPAS.sc <- scale(data$anomPAS) 
hist(anomPAS.sc,breaks=100) 
shapiro.test(sample(anomPAS.sc,500)) # 5000 = max for shapiro.test 
# :. use scaled anomPAS in regressions (sampled W often -> p > 0.05) 
anomMST.sc <- scale(data$anomMST) 
hist(anomMST.sc,breaks=100) 
shapiro.test(sample(anomMST.sc,500)) 
hist(anomMST,breaks=100) 
shapiro.test(sample(anomMST,500)) 
 
# plot MST vs PAS 
 
ct <- cor.test(data$anomMST,data$anomPAS,method="kendall"); ct 
#jpeg("anomaliesPASvsMST-mtnPks-pointLevel.jpg", width=6*ppi,  
#height=6*ppi, res=ppi) 
par(mfrow=c(1,1),mar=c(5,5,3,2)) 
plot(data$anomMST,data$anomPAS,main="All park-years, mountain parks", 
     xlab=expression(paste( 
          "Anomaly, mean spring temperature ("^"o","C)",sep="")), 
     ylab="Anomaly, precipitation as snow (mm)",cex.lab=1.5) 
text(-1.0,-750,paste("Kendall's tau = ",round(ct$estimate,2), 
                      ", p = ",round(ct$p.value,2),sep=""),cex=1) 
#dev.off() 
 
# anomaly plots for data from 3 mtn parks 
 
ppi <- 600 
#png("PASanomByYr-mtnPks-wrt71norm-in-line600dpi.png", width=9.4*ppi,  
#height=6.74*ppi, res=ppi) 
lo <- layout(matrix(c(1,1,1,2), 1, 4, byrow = FALSE)) # 2 panels 
par(mar=c(6,6,2,1)) 
boxplot(data$anomPAS~data$Event_year, 
        ylab="Annual precipitation-as-snow anomaly (mm)", 
        # main="PAS anomaly based on 1971-2000 normals", 
        las=3,cex.lab=2.5,cex.axis=2) 
abline(0,0,lty=3) 
#text(1,650,"(a)",cex=3) 
par(mar=c(6,3,2,2)) 
boxplot(data$anomPAS,xlab="2005-2013",cex.lab=2,cex.axis=2) 
abline(0,0,lty=3) 
#dev.off() 
#png("MSTanomByYr-mtnPks-wrt71norm-in-line600.png", width=9.4*ppi,  
#height=6.74*ppi, res=ppi) 
par(mar=c(6,6,2,1)) 
boxplot(data$anomMST~data$Event_year, 
        ylab=expression(paste( 
             "Mean spring temperature anomaly ("^"o","C)"),sep=""), 
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        las=3,cex.lab=2.5,cex.axis=2) 
abline(0,0,lty=3) 
#text(1,-1.6,"(b)",cex=3) 
par(mar=c(6,3,2,2)) 
boxplot(data$anomMST,xlab="2005-2013",cex.lab=2,cex.axis=2) 
abline(0,0,lty=3) 
#dev.off() 
 
# re-calc correlation between PAS and MST 
# aggregate by transect to reduce spatial pseudorep 
j <- which(data$Park_code=="OLYM"); length(j) 
agAnomMST <- aggregate(data$anomMST[j]~data$Site_code[j],FUN=mean) 
par(mfrow=c(1,1),mar=c(5,5,3,2)) 
hist(agAnomMST[,2]) 
agAnomPAS <- aggregate(data$anomPAS[j]~data$Site_code[j],FUN=mean) 
hist(agAnomPAS[,2]) 
# not normally distributed so use Kendallz tau 
cor.test(agAnomPAS[,2],agAnomMST[,2],method="kendall") 
# calc correlation via Cochrane-Orcutt procedure 
require(orcutt) 
reg <- lm(agAnomPAS[,2]~agAnomMST[,2]) 
summary(reg) 
reg2 <- cochrane.orcutt(reg) 
reg2 
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Appendix 4: R and embedded JAGS scripts for fitting NCCN 
landbird monitoring data to N-mixture models to estimate 
trends in population density 
# Adapts the pre-processed survey and point data for use in hierarchical models, and 
# fits Amundson-type models extended to include variation in interval length 
# and trends in population density using data from multiple parks and years 
 
# Code file name “script4trendAnalysis.R” available from C. Ray (cray@birdpop.org) 
 
# 1) Adapt the clean survey and point data for the model in part 2 (~line 500) 
 
# Read the .csv output from survey data query "qs_a121..." and point data query 
# "qs_a204..."; interpret survey data from the perspective of a given focal species; 
# select and display data from a subset of parks, years to guide model construction 
 
# “***#” is used below to throw an error and call attention to any parameters 
# requiring updates before fitting data from different species or to different models 
 
require(dplyr) 
 
***# update 5 settings as needed: 
species <- "OSFL" 
year <- "all" # one of '2005' ... to '2014' or 'all' 
park <- "all" # one of 'MORA', 'NOCA', 'OLYM' or 'all' 3 mtn parks 
bins <- "equalDensity" # one of 'equalWidth', 'equalDensity' or 'equalArea' 
outfile <- paste(species,"out1.eqD",sep="") 
 
***# update input file names as needed 
sd <- read.csv(file="nccn.survey.data.2005to2014.csv") #survey data 
pd <- read.csv(file="nccn.site.data.2005to2014.csv") #point/site data 
cd <- read.csv(file="nccn.climate.data.2005to2014-lagged1at2004-2013.csv")  
#ClimateWNA data are lagged 1 yr for both PAS and MST 
 
# - merge survey, point and climate data 
 
#before merging, compare structures to ensure compatibility; e.g., Location_code 
#might contain leading zeros for a transect in sd ("069a") but not in pd ("69a") 
#note: just replace "069a" with "69a" in the input file before reading it in; to 
#no avail I coded fixes (levels(x)[levels(x)=="069a"]<-"69a" or the "plyr" fn  
#revalue(x,c("069a"="69a")); though the merge DID work it still gave a warning 
names(sd); names(pd); names(cd) 
sd <- sd[,-1]; pd <- pd[,-1]; cd <- cd[,-1] #remove first columns 
sharedVars <- intersect(colnames(sd),colnames(pd)) 
str(sd[,sharedVars]) 
str(pd[,sharedVars]) 
sharedVars <- intersect(colnames(sd),colnames(cd)) 
str(cd[,sharedVars]) 
sharedVars <- intersect(colnames(pd),colnames(cd)) 
str(cd[,sharedVars]) 
 
#Start_date format varies, so omit it from the merge (we'll use Day instead) 
j <- c("Event_year","Site_code","Location_code","Park_code","Stratum_name", 
 "Species","Observer","Noise_level","Ever_sang","Seen_first","Group_size", 
 "Obs_distance_m","Obs_notes","Day","Hour","y1","y2","y3") 
sd <- sd[,j]; dim(sd) 
j <- c("Event_year","Site_code","Location_code","Park_code","Panel_type","Panel_name", 
 "Location_type","Detection_class","Is_forested","Habitat_num", 
 "Elevation_m","Slope_deg_90mAvg","Aspect_deg","Beers_90mAvg","UTM_east","UTM_north") 
pd <- pd[,j]; dim(pd) 
#merge survey data with point data, keeping Park_code.x and Park_code.y separate 
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#note: this merge eliminates any problematic rows of pt-yr data w/o survey data 
data <- left_join(sd,pd,by=c("Event_year","Site_code","Location_code")); dim(data) 
 
#use Park_code, etc. to inspect the merge 
all.equal(data$Park_code.x,data$Park_code.y) #if not TRUE, fix 
sum(is.na(data$Park_code.x)) 
sum(is.na(data$Park_code.y)) 
sum(is.na(data$Elevation_m)) 
head(data); tail(data) #everything looks good! 
 
#clean up the data frame 
data <- rename(data,Park_code=Park_code.x) 
data <- select(data,-Park_code.y) 
head(data) 
 
#merge with climate data 
data <- left_join(data,cd,by=c("Event_year","Site_code","Location_code")); dim(data) 
***problems here can originate with the "069a" Location_code 
 
#inspect the merge 
names(data)  
all.equal(data$Park_code.x,data$Park_code.y) #if not TRUE, fix 
***problems here can originate with the "069a" Location_code 
table(data$Park_code.x); table(data$Park_code.y) 
sum(is.na(data$Park_code.x)) 
sum(is.na(data$anomPAS1)) 
sum(data$Event_year=="2014") 
head(data); tail(data) #MAKE SURE everything looks good! 
 
#clean up the data frame 
data <- rename(data,Park_code=Park_code.x) 
data <- select(data,-Park_code.y) 
head(data); tail(data) 
 
# - remove data from small parks LEWI and SAJH 
 
i <- which(data$Park_code=="LEWI"|data$Park_code=="SAJH"); length(i) 
data <- data[-i,]; dim(data) 
 
# - set Group_size = 0 for non-focal spp (including species=NA/Nearest_obs=FALSE) 
 
data[which(data$Species!=species),"Group_size"] <- 0 
data[is.na(data$Species),"Group_size"] <- 0 
table(data$Group_size) 
focal_ct <- table(data$Group_size)[2] #keep this as a check below 
 
# - construct focal-sp non-detections, retaining all survey covar data 
 
#this method retains data on observer, etc.; in contrast, using unique() 
#is complicated by multiple records of the focal sp at a pt-yr, etc. 
 
#omit column of species names (Group_size will represent focal-sp detections) 
data <- data.frame(data[,-which(names(data)=="Species")]) 
names(data); dim(data) 
 
#separate focal-sp detections from other detections 
data1 <- data[which(data$Group_size!=0),]; dim(data1) #focal-sp detections 
data0 <- data[which(data$Group_size==0),]; dim(data0) #non-focal sp detections 
data0 <- data0[!duplicated(data0[,c("Event_year","Site_code","Location_code")]),] 
dim(data0) #unique pt-yrs in which a non-focal sp was detected 
 
#eliminate non-focal sp detections from pt-yrs with focal-sp detections (fsd) by 
#stacking unique (nd) pt-yrs w/fsd above unique pt-yrs w/non-fsd to use !duplicated() 
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#note: we are not eliminating any focal-sp data in this temporary process 
data1.nd <- data1[!duplicated(data1[,c("Event_year","Site_code","Location_code")]),] 
dim(data1.nd) #unique pt-yrs in which the focal sp was detected 
temp <- rbind.data.frame(data1.nd,data0); dim(temp) #unique pt-yrs w/fsd over w/o 
nd <- temp[!duplicated(temp[,c("Event_year","Site_code","Location_code")]),] 
dim(nd) #a single event (fsd or non-fsd) for every pt-yr surveyed 
data0 <- nd[nd$Group_size==0,]; dim(data0) #non-fsd only at pt-yrs w/no fsd 
 
#remove interval counts and associated data from pt-yrs w/no fsd, retaining NAs 
data0[,c("Obs_distance_m","Obs_notes")] <- NA 
j <- c("Ever_sang","Seen_first","y1","y2","y3") 
apply(data0[,j],2,function(x) sum(is.na(x))) #display NAs for the check below 
data0[,j][data0[,j]>0] <- 0 #set all numbers to zero, retaining NAs 
apply(data0[,j],2,function(x) sum(x,na.rm=T)) #check - all zeros? 
apply(data0[,j],2,function(x) sum(is.na(x))) #check - NAs retained? 
 
#create compact data frame of survey data, restoring all focal-sp data 
data <- rbind.data.frame(data1,data0); dim(data); head(data) 
table(data$Group_size) 
focal_ct #should agree with table above 
 
# - index the focal data 
 
ip <- iy <- 1:dim(data)[1] #in case park=="all" & year=="all" 
if (park!="all") {ip <- which(data$Park_code==park)} 
if (year!="all") {iy <- which(data$Event_year==year)} 
data.i <- intersect(ip,iy) 
 
# - determine extent of NAs within the useful set of survey covars 
 
j <- which(names(data)=="Obs_distance_m"|names(data)=="Obs_notes"|names(data)=="y3") 
j 
sum(complete.cases(data[data.i,-j])); sum(is.na(data[data.i,-j])) 
 
# - write focal data to file 
 
dat <- data[data.i,] 
dat <- dat[order(dat$Event_year,dat$Site_code,dat$Location_code),] 
str(droplevels(dat)) 
write.csv(dat,file=paste(species,".",year,".",park,".csv",sep="")) #*** update file 
name as needed 
 
# - if year=all, pad data w/NAs for points not visited in certain years 
 
if (year=="all") { 
 
    #find unique points and unique point-years 
    uniq.pts <- dat[!duplicated(dat[,c("Site_code","Location_code")]),] 
    uniq.pt.yrs <-  
        dat[!duplicated(dat[,c("Event_year","Site_code","Location_code")]),] 
    dim(dat); dim(uniq.pts); dim(uniq.pt.yrs) 
     
    #create "PY" data frame to hold all pt-yr data, including pt-yrs not surveyed 
    a <- uniq.pts; names(a) #set time-varying covars to NA 
    a[,c("Detection_class","Is_forested","Habitat_num")] <- NA 
    yrs <- range(a$Event_year,na.rm=T); totyrs <- yrs[2]-yrs[1]+1; totyrs 
    PY <- a #stack "a" into PY "totyrs" times 
    for (i in 2:totyrs) PY <- rbind(PY,a) 
    ey <- rep(yrs[1]:yrs[2],each=dim(uniq.pts)[1]) #create Event_year column 
    length(ey) 
    PY[,"Event_year"] <- ey; head(PY); tail(PY$Event_year) 
    #join by static point attributes 
    PY <- left_join(PY,dat,by=c("Event_year","Site_code","Location_code", 
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                                "Park_code","Stratum_name","Panel_type","Panel_name", 
                                "Location_type","Elevation_m","Slope_deg_90mAvg", 
                                "Aspect_deg","Beers_90mAvg","UTM_east","UTM_north")) 
    apply(PY,2,function(x) sum(is.na(x))) #NAs should vary between .x and .y columns 
    names(PY); j <- grep(".x",names(PY)); j #j identifies .x columns to delete 
    PY <- PY[,-j]; names(PY) 
    names(PY) <- sub("\\.y","",names(PY)); head(PY) #re-name .y columns 
    #add climate vars for every pt-yr regardless of sampling 
    PY <- left_join(PY,cd,by=c("Event_year","Site_code","Location_code","Park_code")) 
    apply(PY,2,function(x) sum(is.na(x))) #NAs should vary between .x and .y columns 
    names(PY); j <- grep(".x",names(PY)); j #j identifies .x columns to delete 
    PY <- PY[,-j]; names(PY) 
    names(PY) <- sub("\\.y","",names(PY)); head(PY) #re-name .y columns 
    write.csv(PY,file=paste(species,".with.NAs.csv",sep="")) #*** update file name 
    dat <- PY 
 
} # end: if (year=="all") 
   
# - calculate y = count of individual birds by point-year 
 
dat <- mutate(dat,ptyr=paste(Site_code,Location_code,Event_year,sep=".")) 
dat <- mutate(dat,PTYR=ptyr) 
by_ptyr <- group_by(dat,ptyr) #group by pt-yr 
#re-code Detection_class to allow averaging across records below (for now) 
dat$Detection_class <- abs(as.numeric(dat$Detection_class)-2) 
by_ptyr_v <- summarize(by_ptyr, 
                         y=sum(Group_size,na.rm=T), 
                         PTYR=first(PTYR), 
                         noise=first(Noise_level), 
                         day=first(Day), 
                         hour=mean(Hour,na.rm=T), 
                         obs=first(Observer), 
                         forest=mean(Is_forested,na.rm=T), 
                         dense=mean(abs(as.numeric(Detection_class)-2),na.rm=T), 
                         elev=first(Elevation_m), 
                         slope=first(Slope_deg_90mAvg), 
                         aspect.d=first(Aspect_deg), 
                         aspect.b=first(Beers_90mAvg), 
                         strat=first(Stratum_name), 
                         tran=first(Site_code), 
                         Park=first(Park_code), 
                         Year=first(Event_year), 
                         PASanom=first(anomPAS1), 
                         MSTanom=first(anomMST1)) 
   
#re-name the vars 
y <- by_ptyr_v$y 
PTYR <- by_ptyr_v$PTYR 
noise <- by_ptyr_v$noise #covars will be rescaled in data step 
day <- by_ptyr_v$day 
hour <- by_ptyr_v$hour 
obs <- droplevels(by_ptyr_v$obs) 
forest <- by_ptyr_v$forest 
dense <- by_ptyr_v$dense 
elev <- by_ptyr_v$elev 
slope <- by_ptyr_v$slope 
aspect.d <- by_ptyr_v$aspect.d #Aspect_deg 
aspect.b <- by_ptyr_v$aspect.b #Beers_90mAvg 
strat <- droplevels(by_ptyr_v$strat) 
tran <- droplevels(by_ptyr_v$tran) 
Park <- droplevels(by_ptyr_v$Park) #lowercase "park" is used elsewhere to  
                                   #define the dataset (park==all) 
Year <- by_ptyr_v$Year #lowercase "year" used elsewhere 
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PASanom <- by_ptyr_v$PASanom 
MSTanom <- by_ptyr_v$MSTanom 
 
#get rid of zeros in y that are really NAs 
i <- which(is.na(day)); length(i) 
y[i] <- NA; table(y) 
#get rid of NaNs in hour, which resulted from NAs when taking the mean 
i <- which(is.nan(hour)); length(i) 
hour[i] <- NA; table(hour) 
 
# display data and relationships 
 
page <- 1 
pdf(file=paste("pt-yr.plots",page,".pdf",sep="")) 
 
par(mfrow=c(2,2),mar=c(4,4,1,1)+0.1) 
layout(matrix(c(1,2,3,3), 2, 2, byrow = TRUE)) 
 
#day 
h <- hist(day,plot=F); h 
tb <- h$counts; labText <- "Day of count (ordinal)" 
names(tb) <- round(h$mids) 
bp <- barplot(tb,ylab="Point-counts completed",cex.axis=1.5,cex.lab=1.5, 
              cex.names=1.25,xlab=labText,las=3) 
legend(bp[round(length(bp)/2)],max(tb),xjust=0.5,bty="n", 
       legend=c(paste("Min",min(day,na.rm=T)),paste("Max",max(day,na.rm=T)))) 
 
#hour 
tb <- table(hour); labText <- "Hour of count (a.m.)" 
bp <- barplot(tb,ylab="Point-counts completed",cex.axis=1.5,cex.lab=1.5, 
              cex.names=1.5,xlab=labText) 
 
#observers 
tb <- table(droplevels(obs)); labText <- "Observer (initials)" 
firstNames <- sub("^.*_","",names(tb)); firstNames 
firstInitials <- substring(firstNames,1,1); firstInitials 
lastNames <- sub("_.*$","",names(tb)); lastNames 
lastInitials <- substring(lastNames,1,1); lastInitials 
initials <- paste(firstInitials,lastInitials,sep=""); initials 
names(tb) <- initials; names(tb) 
bp <- barplot(tb,ylab="Point-counts completed",cex.axis=1.5,cex.lab=1.5, 
              cex.names=1.25,xlab=labText,las=3) 
 
dev.off() 
page <- 2 
pdf(file=paste("pt-yr.plots",page,".pdf",sep="")) 
 
par(mfrow=c(2,2),mar=c(4,8,2,8)+0.1) 
 
#surveys X park 
tb <- table(droplevels(Park[hour>0])); labText <- "Park" 
bp <- barplot(tb,ylab="Point-counts completed",cex.axis=1.5,cex.lab=1.5,space=0.75, 
              cex.names=1.5,las=3) 
 
#strat 
tb <- table(droplevels(strat[hour>0])); labText <- "Stratum" 
names(tb) <- sub("^.*_","",names(tb)) 
bp <- barplot(tb,ylab="Point-counts completed",cex.axis=1.5,cex.lab=1.5,space=0.75, 
              cex.names=1.5,xlab=labText) 
 
#forest 
tb <- table(forest); labText <- "Forested?" 
names(tb) <- c("No","Yes") 
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bp <- barplot(tb,ylab="Frequency",cex.axis=1.5,cex.lab=1.5,space=1, 
              cex.names=1.5,xlab=labText) 
 
#dense 
tb <- table(dense); labText <- "Dense cover?" 
names(tb) <- c("No","Yes") 
bp <- barplot(tb,ylab="Frequency",cex.axis=1.5,cex.lab=1.5,space=1, 
              cex.names=1.5,xlab=labText) 
 
dev.off() 
page <- 3 
pdf(file=paste("pt-yr.plots",page,".pdf",sep="")) 
 
par(mfrow=c(1,1),mar=c(4,8,1,8)+0.1) 
 
#noise 
tb <- table(noise); labText <- "Noise level during count" 
bp <- barplot(tb,ylab="Frequency",cex.axis=1.5,cex.lab=1.5, 
              cex.names=1.5,xlab=labText) 
for (i in 0:max(tb)) {text(bp[i+1],0.9*max(tb),tb[i+1],cex=0.9)} 
 
dev.off() 
page <- 4 
pdf(file=paste("pt-yr.plots",page,".pdf",sep="")) 
 
par(mfrow=c(2,2),mar=c(4,4,1.5,1)+0.1) 
 
#elev 
h <- hist(elev[hour>0],plot=F); h 
tb <- h$counts; labText <- "Elevation (x100 m)" 
names(tb) <- as.numeric(h$mids)/100 
bp <- barplot(tb,ylab="Frequency",cex.axis=1.5,cex.lab=1.5, 
              cex.names=1,xlab=labText,las=3) 
 
#slope 
h <- hist(slope[hour>0],plot=F); h 
tb <- h$counts; labText <- "Slope (degrees)" 
names(tb) <- round(as.numeric(h$mids)) 
bp <- barplot(tb,ylab="Frequency",cex.axis=1.5,cex.lab=1.5, 
              cex.names=1.25,xlab=labText,las=3) 
 
#aspect.d 
h <- hist(aspect.d[hour>0],plot=F); h 
tb <- h$counts; labText <- "Aspect (degrees)" 
names(tb) <- h$mids 
bp <- barplot(tb,ylab="Frequency",cex.axis=1.5,cex.lab=1.5, 
              cex.names=1,xlab=labText,las=3) 
 
#aspect.b 
h <- hist(aspect.b[hour>0],plot=F); h 
tb <- h$counts; labText <- "Aspect (Beers transform)" 
names(tb) <- h$mids 
bp <- barplot(tb,ylab="Frequency",cex.axis=1.5,cex.lab=1.5, 
              cex.names=1,xlab=labText,las=3) 
#Beers_90mAvg=1+cos((45-Aspect_deg[averaged over 90-m radius])*pi/180) (Beers 1966) 
#can't back-transform uniquely, so grab original Aspect_deg, below 
 
par(new=TRUE,mar=c(15,13,1.5,1)+0.1) 
plot(aspect.d[hour>0],aspect.b[hour>0],xlab="Aspect",ylab="Beers transform",pch=".") 
 
dev.off() 
page <- 5 
pdf(file=paste("pt-yr.plots",page,".pdf",sep="")) 
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#returns a p-value from ANOVA of y~x 
aov.p.val <- function(y,x) { 
                aov.yx <- aov(y~x) 
                return(unlist(summary(aov.yx))["Pr(>F)1"]) 
} 
 
assoc <- function(x,y,mtxt,xtxt,ytxt,rtxt) { 
            tb <- table(x,y) 
            if (!missing(rtxt)) rownames(tb) <- rtxt 
            assocplot(tb[,1:dim(tb)[2]],main=mtxt,xlab=xtxt,ylab=ytxt, 
                      col=c("black","white")) 
} 
 
par(mfrow=c(2,2),mar=c(4,4,1,1)+0.1) 
 
if (park=="all") { 
     
    #noise x park 
    xa <- droplevels(Park); ya <- noise 
    mtxt <- paste("ANOVA p =",round(aov.p.val(ya,xa),digits=3)) 
    assoc(xa,ya,mtxt,"Park","Noise") 
     
    #park x observer ("initials" for each observer defined above) 
    xa <- droplevels(obs); ya <- droplevels(Park) 
    mtxt <- paste("ANOVA p =",round(aov.p.val(as.numeric(ya),as.numeric(xa)), 
                  digits=3)) 
    assoc(xa,ya,mtxt,"Observer","Park",initials) 
     
} #end: if (park=="all") 
   
dev.off() 
 
#display focal-species patterns - page 1 
 
page <- 1 
pdf(file=paste(outfile,".plots",page,".pdf",sep="")) 
 
par(mfrow=c(2,2),mar=c(4,4,1.5,1)+0.1) 
 
if (park=="all") { 
 
    #count by park ANOVA 
    xa <- droplevels(Park[hour>0]); ya <- y 
    mtxt <- paste(species, 
                  " x park ANOVA p = ",round(aov.p.val(ya,xa),digits=3),sep="") 
    assoc(xa,ya,mtxt,"Park","Count") 
 
} #end: if (park=="all") 
 
#ct x stratum  
xa <- droplevels(strat); ya <- y 
mtxt <- paste(species," x stratum p = ",round(aov.p.val(ya,xa),digits=3),sep="") 
assoc(xa,ya,mtxt,"Stratum","Count") 
 
dev.off() 
page <- 2 
pdf(file=paste(outfile,".plots",page,".pdf",sep="")) 
 
plotpoisson <- function(x,y,mtxt,xtxt,ytxt) { 
    plot(jitter(x),jitter(y),main=mtxt,xlab=xtxt,ylab=ytxt, 
         cex.main=1.5,cex.axis=1.5,cex.lab=1.5) 
    i <- !is.na(x) #index used to limit null fit to same dataset as model fit 
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    mod <- glm(y[i]~x[i],family=poisson) 
    x.rng <- seq(min(x[i]),max(x[i]),length.out=sum(i)) 
    y.pred <- exp(mod$coefficients[1]+mod$coefficients[2]*x.rng) #predict() 
    lines(x.rng,y.pred,lwd=2,col="red") 
    null <- glm(y[i]~1,family=poisson) 
    null.dAIC <- AIC(mod,null)[2,2]-AIC(mod,null)[1,2] 
    text(max(x.rng),max(y,na.rm=T)-0.25,col="red",cex=1,pos=2, 
         paste("Null dAIC=",round(null.dAIC,digits=2),sep="")) 
    p.val <- summary(mod)$coefficients[2,"Pr(>|z|)"] 
    text(max(x.rng),max(y,na.rm=T)-0.5,col="red",cex=1,pos=2, 
         paste("P=",round(p.val,digits=2),sep="")) 
} 
   
par(mfrow=c(2,2),mar=c(4,4,1.5,1)+0.1) 
 
#count by pt-yr 
tb <- table(y); labText <- "Count by point" 
if (year=="all") {yr <- "-year"} else {yr <- paste(" (",year,")",sep="")} 
labText <- paste(labText,yr,sep="") 
bp <- barplot(tb,main=species,ylab="Frequency",cex.main=1.5,cex.axis=1.5, 
              cex.lab=1.5,cex.names=1.5,xlab=labText) 
for (i in 0:max(tb)) {text(bp[i+1],0.9*max(tb),tb[i+1],cex=0.9)} 
 
#count by noise 
plotpoisson(noise,y,"","Noise (jittered)",paste(species,"count (jittered)")) 
 
#count by pt-yr-day 
plotpoisson(day,y,"","Day (jittered)",paste(species,"count (jittered)")) 
 
#count by pt-yr-hour 
plotpoisson(hour,y,"","Hour (jittered)",paste(species,"count (jittered)")) 
 
dev.off() 
page <- 3 
pdf(file=paste(outfile,".plots",page,".pdf",sep="")) 
 
#raw count by park and year 
par(mfrow=c(1,2),mar=c(4,4,1,1)+0.1) 
yraw <- mutate(data.frame(y),pkyr=paste(Park,Year,sep=".")) 
by_pkyr <- group_by(yraw,pkyr) #group by park-yr 
by_pkyr_v <- summarize(by_pkyr,toty=sum(y,na.rm=T)) 
toty <- by_pkyr_v$toty; toty 
yraw_yr <- mutate(data.frame(y),Year) 
by_yr <- group_by(yraw_yr,Year) #group by yr 
by_yr_v <- summarize(by_yr,toty_yr=sum(y,na.rm=T)) 
toty_yr <- by_yr_v$toty_yr; toty_yr 
ht <- 1.5*max(toty_yr,na.rm=T) 
plot(1:10,toty_yr,ylim=c(0,ht),xlab="Year",ylab=paste(species,"unadjusted count"), 
     pch="",cex.lab=1.5,cex.axis=1.25) 
lines(1:10,toty_yr,lwd=2) 
if (park=="all") { 
    lines(1:10,toty[1:10],lty=2,col="red") 
    lines(1:10,toty[11:20],lty=1,col="green3") 
    lines(1:10,toty[21:30],lty=4,col="blue") 
    legend(3,ht,legend=c("Total","MORA","NOCA","OLYM"),lwd=c(2,1,1,1), 
           lty=c(1,2,1,4),col=c("black","red","green3","blue"),bty="n",cex=1.5) 
} else { 
    text(3,ht,park,cex=1.5) 
} #end: if (park=="all") 
 
#effort-adjusted count by park and year (count per pt surveyed omitting interval 3) 
datprime <- select(dat,y1,y2,Day,Park_code,Event_year,ptyr) #omit interval 3 
datprime <- mutate(datprime,yprime=y1+y2,pkyr=paste(Park_code,Event_year,sep=".")) 
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#group by pt and then by park to avoid over-counting pts surveyed 
by_ptyr_prime <- group_by(datprime,ptyr) #group by pt 1st 
by_ptyr_v_prime <- summarize(by_ptyr_prime, 
                             dayprime=first(Day), 
                             yprime=sum(yprime,na.rm=T), 
                             pkyr=first(pkyr), 
                             yearprime=first(Event_year)) 
by_pkyr <- group_by(by_ptyr_v_prime,pkyr) #group by park 2nd 
by_pkyr_v <- summarize(by_pkyr, 
                       yprime=sum(yprime,na.rm=T), 
                       surveyed_pts=sum(dayprime>0,na.rm=T), 
                       yearprime=first(yearprime)) 
ct_pkyr <- by_pkyr_v$yprime #total count by park-year 
pts_pkyr <- by_pkyr_v$surveyed_pts #total pts surveyed by park-year 
tot_pk <- ct_pkyr/pts_pkyr 
by_yr_prime <- group_by(by_pkyr_v,yearprime) #group by year to graph 
by_yr_v_prime <- summarize(by_yr_prime, 
                           totct=sum(yprime,na.rm=T), 
                           totpts=sum(surveyed_pts,na.rm=T)) 
toty <- by_yr_v_prime$totct/by_yr_v_prime$totpts 
ht <- 1.5*max(tot_pk,na.rm=T) 
plot(1:10,toty,ylim=c(0,ht),xlab="Year", 
     ylab=paste(species,"effort-adjusted count per point"), 
     pch="",cex.lab=1.5,cex.axis=1.25) 
lines(1:10,toty,lwd=2) 
if (park=="all") { 
    lines(1:10,tot_pk[1:10],lty=2,col="red") 
    lines(1:10,tot_pk[11:20],lty=1,col="green3") 
    lines(1:10,tot_pk[21:30],lty=4,col="blue") 
    legend(3,ht,legend=c("Total","MORA","NOCA","OLYM"),lwd=c(2,1,1,1), 
           lty=c(1,2,1,4),col=c("black","red","green3","blue"),bty="n",cex=1.5) 
} else { 
    text(3,ht,park,cex=1.5) 
} #end: if (park=="all") 
   
dev.off() 
page <- 4 
pdf(file=paste(outfile,".plots",page,".pdf",sep="")) 
   
#count by year 
par(mfrow=c(1,1),mar=c(4,4,1.5,1)+0.1) 
y_prime <- by_ptyr_v_prime$yprime[hour>0] #defined for plot above 
par(mfrow=c(1,1),mar=c(4,4,1,1)+0.1) 
plotpoisson(Year,y_prime,"","Year (jittered)", 
            paste(species,"effort-adjusted point counts (jittered)")) 
   
dev.off() 
page <- 5 
pdf(file=paste(outfile,".plots",page,".pdf",sep="")) 
   
par(mfrow=c(2,2),mar=c(4,4,1.5,1)+0.1) 
   
#occ x forest 
occ <- y>0; occ <- as.numeric(occ) 
xa <- forest; ya <- occ 
mtxt <- paste(species,"x forest ANOVA p =",round(aov.p.val(ya,xa),digits=3)) 
assoc(xa,ya,mtxt,"Forested","Occupied") 
   
#occ x dense 
xa <- dense; ya <- occ 
mtxt <- paste(species,"x dense cover ANOVA p =",round(aov.p.val(ya,xa),digits=3)) 
assoc(xa,ya,mtxt,"Dense cover","Occupied") 
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#count by elevation 
#no need for "hour>0" here, because y contains NAs 
plotpoisson(elev,y,"","Elevation (jittered)",paste(species,"count (jittered)")) 
   
#count by slope 
plotpoisson(slope,y,"","Slope (jittered)",paste(species,"count (jittered)")) 
   
dev.off() 
page <- 6 
pdf(file=paste(outfile,".plots",page,".pdf",sep="")) 
   
par(mfrow=c(2,2),mar=c(4,4,1.5,1)+0.1) 
   
#count by pt-yr-aspect (Beers) 
#this regression is ok because y contains NAs (no pseudorep of zeros) 
plotpoisson(aspect.b,y,"","Aspect (Beers transform, jitter)", 
            paste(species,"count (jittered)")) 
text(0.25,0.5,"SW",col="red"); text(1.75,0.5,"NE",col="red") 
   
#count by pt-yr-aspect (untransformed) 
plot(jitter(aspect.d),jitter(y),main="", 
     xlab="Aspect (degrees, jitter)",ylab=paste(species,"count (jittered)"), 
     cex.main=1.5,cex.axis=1.5,cex.lab=1.5) 
   
#count by PAS anomaly 
plotpoisson(PASanom,y,"","Lag-1 PAS anomaly (mm, jitter)", 
            paste(species,"count (jittered)")) 
   
#count by MST anomaly 
plotpoisson(MSTanom,y,"","MST anomaly (C, jitter)", 
            paste(species,"count (jittered)")) 
   
dev.off() 
page <- 7 
pdf(file=paste(outfile,".plots",page,".pdf",sep="")) 
   
#find tinterval = time-of-removal per detection - function used below 
get.first <- function(x) { 
  if (sum(x,na.rm=T)>0) {posn <- min(which(x!=0))} else {posn <- NA} 
} 
   
#plot effects of distance and time 
   
# nbreaks = number of distance bins 
nbreaks <- 5 #this is the number Andy Royle suggested 
   
#find a sample for which detection distance and interval are independent 
samp <- 0.9 #initial sample = 90% of all detections at this pt-yr 
   
repeat{ 
     
  #find dclass = distance class per detection 
  d <- dat$Obs_distance_m 
  par(mfrow=c(2,2),mar=c(4,4,1.5,1)+0.1) 
  hist(d,breaks=8,main=paste(species,year,"detections"),cex.lab=1.5, 
       xlab="Detection distance (m)") 
  maxd <- trunc(quantile(d,probs=samp,type=8,na.rm=T)); maxd 
  if (bins=="equalDensity") { 
    breaks <- quantile(d[d<=maxd],probs=seq(0,1,(1/nbreaks)),type=7,na.rm=TRUE) 
    breaks[1] <- 0 
  } 
  if (bins=="equalArea") { #radii=sqrt((x/nbreaks)*maxd^2) where x = number of bins 
    breaks <- trunc(c(0,sqrt((1:nbreaks)/nbreaks*(maxd^2)))) 
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  } 
  if (bins=="equalWidth") { 
    breaks <- round(seq(0,maxd,maxd/nbreaks)) 
  } 
  dclass <- cut(d,breaks,labels=F) 
  areas <- pi*((breaks[2:(nbreaks+1)]^2)-(breaks[1:nbreaks]^2)) 
     
  #freq of detections in each dclass 
  tb <- table(dclass) 
  bp <- barplot(tb,width=areas,ylim=c(0,1.2*max(tb)),ylab="Number of detections", 
                cex.main=1.5,cex.axis=1.5,cex.lab=1.5,cex.names=1.5, 
                xlab="Distance class") 
  for (i in 1:nbreaks) {text(bp[i],0.15*max(tb),round(breaks[i+1]),cex=1)} 
  for (i in 1:nbreaks) {text(bp[i],0.1*max(tb),"m",cex=1)} 
  #pct of detection-distances truncated to avoid fitting noise, non-independence 
  yj <- subset(dat,select=c(y1,y2,y3)); yj[1:50,] 
  truncPct <- sum(yj[d>maxd,],na.rm=T)/sum(yj,na.rm=T)*100; print(truncPct) 
  text(round(bp[nbreaks]),(1.1*max(tb)),col="red",cex=1,pos=2, 
       paste("Truncated ",round(truncPct),"% (>",maxd,"m)",sep="")) 
  #detections per total (cumulative) area 
  density <- cumsum(tb)/(pi*(breaks[2:(nbreaks+1)]^2)) 
  bp <- barplot(density,width=areas,ylab="Detections/cumulative area",cex.main=1.5, 
                cex.axis=1.5,cex.lab=1.5,cex.names=1.5,xlab="Distance class") 
  #detections per area of each class 
  density <- tb/areas 
  bp <- barplot(density,width=areas,ylab="Detections/class area",cex.main=1.5, 
                cex.axis=1.5,cex.lab=1.5,cex.names=1.5,xlab="Distance class") 
     
  #find tinterval = time-of-removal per detection 
  f <- apply(yj,1,get.first) 
  tinterval <- as.numeric(f) #plotted way below 
     
  #find interval x distance association; looking for independence 
  xa <- dclass; ya <- tinterval 
  pval <- aov.p.val(ya,xa) 
  mtxt <- paste("Assoc: interval x dist, p =",round(pval,digits=3)) 
  assoc(xa,ya,mtxt,"Detection distance class","Detection interval") 
     
  #find slope of interval x distance; do not truncate distant detections if 
  #detection interval is negatively related to distance 
  IxD <- lm(ya~xa); slope <- coef(IxD)[2] 
     
  if (pval > 0.05 | samp < 0.6 | slope < 0) {break} else {samp <- samp - 0.025} 
     
} #repeat 
   
dev.off() 
 
if (samp < 0.6) {stop("Detection interval and distance are not independent")} 
 
# delta = distance width for each bin (set to be equal intervals in this example) 
delta <- breaks[-1] - breaks[-length(breaks)]; delta 
 
# mdpts = midpoints of distance bins 
mdpts <- breaks[-1] - delta/2; mdpts 
 
#find nsurveys = number of points surveyed (less than or equal to rows of data) 
nsurveys <- length(y); nsurveys #y=num of focal-sp indivs detected in each survey 
 
# find nobs = number of times the species was detected (as an individual or group) 
#NOTE: To use nobs the way Amundson did, I sort a data frame of dclass, 
#tinterval and surveyid such that detections appear in the top 1:nobs rows; 
#nobs is used to index (i <- 1:nobs) surveyid[i], dclass[i] and interval[i] 
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#for each observation of a species in the Amundson model, and surveyid[i] 
#should store a number of unique ids equal to nsurveys, because it is used 
#to fill pi.pd.c[j,k] and pi.pa.c[j,k], where k = 1:nsurveys, in the 
#observation-level model, as: 
#for(i in 1:nobs) {  
#  dclass[i] ~ dcat(pi.pd.c[,surveyid[i]]) 
#  tinterval[i] ~ dcat(pi.pa.c[,surveyid[i]]) } 
   
#set surveyid = point ID (site ID) for each individual (or group) detected 
surveyid <- as.numeric(as.factor(dat$ptyr)); tail(surveyid) 
   
#look at correlations between detection interval, hour, day and group size 
hr <- dat$Hour 
dy <- dat$Day 
gs <- dat$Group_size 
nobs <- sum(gs>0,na.rm=T); nobs 
obsData <- data.frame(surveyid,dclass,tinterval,hr,dy,gs) 
head(obsData); dim(obsData) 
obsData <- obsData[order(dat$Group_size,decreasing=T),]; obsData[(nobs-2):(nobs+2),] 
#the line above should show the transition between high survey-id #s and low ones 
#if nobs is correct, because all detections are listed first, followed by  
#non-detections 
obsDat <- obsData[1:nobs,] #grab the data associated with detections 
surveyid <- obsDat$surveyid 
dclass <- obsDat$dclass 
tinterval <- obsDat$tinterval 
hr <- obsDat$hr 
dy <- obsDat$dy 
gs <- obsDat$gs 
cor(obsDat[,-1],use="complete.obs") 
cor.test(dy,hr,use="complete.obs",method="kendall") 
cor.test(gs,dclass,use="complete.obs",method="kendall") 
cor.test(dy,hr,use="complete.obs",method="kendall")  
#other correlations are examined below 
   
#display any dependence of time-of-removal on detection-distance 
 
page <- 8 
pdf(file=paste(outfile,".plots",page,".pdf",sep="")) 
 
par(mfrow=c(2,2),mar=c(4,4,1.5,1)+0.1) 
 
#interval by hour 
xa <- hr; ya <- tinterval 
mtxt <- paste("Assoc: interval x hour ANOVA p =",round(aov.p.val(ya,xa),digits=3)) 
assoc(xa,ya,mtxt,"Hour","Detection interval") 
#note: even if the raw count is strongly related to hour, the model will find 
#no effect of hour if the interval of detection is not related to hour 
 
#display freq of detections in each time interval 
tb <- table(tinterval); tb 
bp <- barplot(tb,ylab="Number of detections",main=paste(species,year),cex.main=1.5, 
              cex.axis=1.5,cex.lab=1.5,cex.names=1.5,xlab="Time interval",space=0.5) 
nas <- is.na(yj); nas <- apply(nas,2,sum); nas 
for (i in 1:3) {text(bp[i],0.9*max(tb),paste(nas[i],"NAs"),cex=0.75)} 
 
#display interval x distance association (hidden in loop above) 
xa <- dclass; ya <- tinterval 
pval <- aov.p.val(ya,xa) 
mtxt <- paste("Assoc: interval x dist, p =",round(pval,digits=3)) 
assoc(xa,ya,mtxt,"Detection distance class","Detection interval") 
 
dev.off() 
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# ntrans = total number of transects 
ntrans <- length(unique(dat$Site_code)); ntrans 
 
# nyears = number of years/primary surveys 
nyears <- totyrs 
 
# nobservers = number of observers over the season/period modeled 
nobservers <- length(initials) 
 
# Nst = initial value for estimate of N - must be close to N or model will not run 
Nst <- y+1; table(Nst); sum(is.na(Nst)) 
 
# J = number of time intervals within each point survey 
J <- 3 
 
 
# 2) run Amundson-type models but with variable-length count intervals 
#    and trends fitted to data from multiple years and parks 
   
require(jagsUI) 
   
# R/JAGS code adapted from Amundson et al. (2014) for estimation of 
# population trends from multi-region point-count data using an  
# N-mixture model to fit covariate effects on trend and on each of 
# two components of detection probability: availability based on  
# time-removal data from intervals varying in length (Farnsworth  
# et al. 2002), and perceptibility based on detection distance  
# 
# References: 
# Amundson, C. L., J. A. Royle, and C. M. Handel. 2014. A hierarchical 
#   model combining distance sampling and time removal to estimate 
#   detection probability during avian point counts. The Auk 131:476–494. 
# Farnsworth, G. L., K. H. Pollock, J. D. Nichols, T. R. Simons, J. E. Hines, 
#   and J. R. Sauer. 2002. A removal model for estimating detection 
#   probabilities from point-count surveys. The Auk 119:414–425. 
   
# VARIABLES 
# y = count of birds per point (*associated w/surveyid, not tinterval) 
# surveyid = survey point/site ID for each detection (individual or group) 
# dclass = distance class per detection 
# tinterval = time interval per detection 
# nsurveys = number of points surveyed (*number of pt-yrs) 
# nobs = number of individuals (or groups) detected 
# delta = distance width for each bin (set as equal intervals in this example) 
# nbreaks = number of distance bins 
# mdpts = midpoints of distance bins 
# maxd = maximum truncated distance (e.g., 200 m) 
# J = number of time periods 
# ... = standardized covariates (e.g., cover w/in 200m) 
# ntrans = total number of transects 
# tran = transect ID for each point 
# day = ordinal date of survey 
# Nst = initial value for estimate of N - must be close to N 
 
# INDICES 
# k in 1:nsurveys # surveys 
# b in 1:nbreaks # distance bins 
# j in 1:J # time intervals 
# i in 1:nobs # detections (individual or group), each having a distance category 
# t in 1:ntrans # transects 
 
# PARAMETERS TO ESTIMATE 
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# meansig = mean scale parameter across sites (half normal shape in this example) 
# meanpdet = mean probability of perceptibility 
# meanpavail = mean probability of availability 
# a0 = intercept for availability 
# b.a1, b.a2, ... = coefficients of covars in availability model 
# sigma0 = intercept for perceptibility 
# b.p1, b.p2, ... = coefficients of covars in perceptibility model 
# b1, b2, ... = coefficients of covars in abundance model 
# meanN = mean site-level abundance 
# mu.tran = mean abundance intercept across transects 
# sd.tran = SD of random transect effect 
# totN = population size of total area surveyed 
# bayesp.pd = Bayesian p-value for pd model 
# bayesp.pa = Bayesian p-value for pa model 
# dens.ha = density of birds per hectare = totN/area surveyed 
 
***# update file name as needed 
file.name <- paste(species,"-fixPk-rndYr-rndTran-trend-climate.jagsUI",sep="") 
 
cat(" 
       
    model { 
     
    # PRIORS 
     
    a0 ~ dnorm(0,0.01) # availability intercept 
    b.a1 ~ dnorm(0,0.01) # coefs of availability covars (detection interval) 
    b.a2 ~ dnorm(0,0.01) 
    sigma0 ~ dunif(0,200) #scale of detection, bounded for covergence 
    b.p1 ~ dnorm(0,0.01) # coefs of perceptibility covars (perception distance) 
    b.p2 ~ dnorm(0,0.01) 
    b0 ~ dnorm(0,0.01) # abundance intercept 
    b1 ~ dnorm(0,0.01) # coefs of abundance covars 
    b2 ~ dnorm(0,0.01) 
    b3 ~ dnorm(0,0.01) 
    b4 ~ dnorm(0,0.01) 
     
    for (p in 1:3) { # park-specific effects 
    parkeff[p] ~ dnorm(0,0.001)T(-15,15) # intercepts bounded for convergence 
    for (l in 1:3) { # strata 
    strateff[p,l] ~ dnorm(0,tau.strat[p,l]/wt[p,l]) # weighted stratum effect 
    tau.strat[p,l] <- pow(sd.strat[p,l],-2)         # (to be implemented) 
    sd.strat[p,l] ~ dunif(0,10) 
    } # strata 
    } 
     
    for (p in 1:3) { # park-specific trends 
    bp[p] ~ dnorm(0,0.001)T(-10,10) # slopes bounded for covergence 
    } 
     
    # random transect effect on abundance intercept nested pt w/in tran 
    for (t in 1:ntrans) { 
    traneff[t] ~ dnorm(0,tau.tran) 
    } 
    tau.tran <- pow(sd.tran,-2) 
    sd.tran ~ dunif(0,10) 
     
    # random year effect on abundance 
    for (t in 1:nyears) { 
    yeareff[t] ~ dnorm(0,tau.year) 
    } 
    tau.year <- pow(sd.year,-2) 
    sd.year ~ dunif(0,10) 
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    # random observer effect on perception 
    for (i in 1:(nobservers+1)) { 
    obseff[i] ~ dnorm(0,tau.obs) 
    } 
    tau.obs <- pow(sd.obs,-2) 
    sd.obs ~ dunif(0,10) 
     
    # random transect effect on perception 
    for (t in 1:ntrans) { 
    traneff.pd[t] ~ dnorm(0,tau.tr.pd) 
    } 
    tau.tr.pd <- pow(sd.tr.pd,-2) 
    sd.tr.pd ~ dunif(0,10) 
     
    # random year effect on perception 
    for (i in 1:10) { 
    yeareff.pd[i] ~ dnorm(0,tau.yr.pd) 
    } 
    tau.yr.pd <- pow(sd.yr.pd,-2) 
    sd.yr.pd ~ dunif(0,10) 
     
    # random pt-year effect on perception 
    for (k in 1:nsurveys) { 
    ptyreff.pd[k] ~ dnorm(0,tau.py.pd) 
    } 
    tau.py.pd <- pow(sd.py.pd,-2) 
    sd.py.pd ~ dunif(0,10) 
     
    # DETECTION PROBABILITY FUNCTIONS 
     
    for (k in 1:nsurveys) { 
     
    # covariates of availability and perceptibility*** 
    log(sigma[k]) <- log(sigma0) #+ obseff[observer[k]] #+ ptyreff.pd[PTYR[k]] 
    logit(q[k]) <- a0 #+ b.a1*day[k] + b.a2*hour[k] 
     
    # distance-based estimation of detection probability 
     
    for (b in 1:nbreaks) { 
     
    log(g[b,k]) <- -mdpts[b]*mdpts[b]/(2*sigma[k]*sigma[k]) #half-normal 
    f[b,k] <- (2*mdpts[b]*delta[b])/(maxd*maxd) # bin widths vary*** 
    pi.d[b,k] <- g[b,k]*f[b,k]  # p(detection) per pt-bin 
    pi.d.c[b,k] <- pi.d[b,k]/pd[k] # conditional form stdized by p(detected) 
     
    } # b in 1:nbreaks 
     
    pd[k] <- sum(pi.d[,k])  # pd is a sum over all dclass bins 
     
    # removal-based estimation of availability given unequal intervals 
     
    pi.a[1,k] <- 1-pow(q[k],3) # p(available in interval j=1) 
    pi.a[2,k] <- pow(q[k],3)*(1-pow(q[k],2)) # p(avail in j=2) 
    pi.a[3,k] <- pow(q[k],5)*(1-pow(q[k],2)) # p(avail in j=3) 
    # p(available in each interval j | available in at least one interval) 
    for (j in 1:J) {pi.a.c[j,k] <- pi.a[j,k]/pa[k]} 
    pa[k] <- sum(pi.a[,k]) # p(available in at least one interval) 
     
    } # k in 1:nsurveys 
     
    # OBSERVATION-LEVEL MODEL  
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    for (i in 1:nobs) {  
     
    # single binomial trial with categorical dist linking dclass & tinterval to pt 
    dclass[i] ~ dcat(pi.d.c[,surveyid[i]]) # p(outcome = 1 to nbreaks dclasses) 
    tinterval[i] ~ dcat(pi.a.c[,surveyid[i]]) # p(outcome = 1 to J intervals) 
     
    } # i in 1:nobs 
     
    # ABUNDANCE ESTIMATION 
     
    for (k in 1:nsurveys) { 
     
    # counts as a function of number available and detection probability 
    y[k] ~ dbin(pd[k],n.a[k]) 
    # number available for sampling as a function of abundance and p(available) 
    n.a[k] ~ dbin(pa[k],N[k]) 
     
    # abundance model 
    N[k] ~ dpois(lambda[k]) # predicted abundance per survey (point-year) 
     
    # covariates of abundance*** 
    log(lambda[k]) <- parkeff[Park[k]] + yeareff[Year[k]] + bp[Park[k]]*Year[k] +  
                      traneff[tran[k]] + b2*PASanom[k] + b3*MSTanom[k]  
     
    } # k in 1:nsurveys 
     
    # GOODNESS OF FIT STATS 
     
    for (k in 1:nsurveys) { 
     
    n.a.fit[k] ~ dbin(pa[k],N[k]) # create new realization of model 
    y.fit[k] ~ dbin(pd[k],n.a[k]) 
     
    e.pd[k] <- pd[k]*n.a[k] # original model prediction 
    E.pd[k] <- pow((y[k]-e.pd[k]),2)/(e.pd[k]+0.5) #dev from obs 
    E.New.pd[k] <- pow((y.fit[k]-e.pd[k]),2)/(e.pd[k]+0.5) #dev from pred 
     
    e.pa[k] <- pa[k]*N[k] 
    E.pa[k] <- pow((n.a[k]-e.pa[k]),2)/(e.pa[k]+0.5) 
    E.New.pa[k] <- pow((n.a.fit[k]-e.pa[k]),2)/(e.pa[k]+0.5) 
     
    } # k in 1:nsurveys 
     
    fit.pd <- sum(E.pd[]) #dev from obs 
    fit.new.pd <- sum(E.New.pd[]) #dev from pred 
     
    fit.pa <- sum(E.pa[]) 
    fit.new.pa <- sum(E.New.pa[]) 
     
    # SUMMARY STATS 
     
    mupavail <- mean(pa[]) # mean probability of availability 
    mupdet <- mean(pd[]) # mean probability of perceptibility 
    musigma <- mean(sigma[]) # mean scale parameter across sites 
    bayesp.pd <- step(fit.new.pd-fit.pd) # p-value for perceptibility model 
    bayesp.pa <- step(fit.new.pa-fit.pa) # p-value for availability model 
    totN.m <- sum(N[mora])  # population size of area surveyed in MORA 
    totN.n <- sum(N[noca]) 
    totN.o <- sum(N[olym]) 
    totN <- sum(N[]) 
    for (i in 1:10) { # N per year and park-year 
    N.yr.m[i] <- sum(N[yr.m[,i]]) #in MORA 
    N.yr.n[i] <- sum(N[yr.n[,i]]) 
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    N.yr.o[i] <- sum(N[yr.o[,i]]) 
    N.yr[i] <- sum(N[yr[,i]]) 
    } 
    muN.mora <- mean(N[mora]) # mean point-level abundance in MORA 
    muN.noca <- mean(N[noca]) 
    muN.olym <- mean(N[olym]) 
    muN <- mean(N[]) 
    ha <- maxd*maxd*3.14159/10000 # hectares surveyed at each pt 
    dens.ha.m <- muN.mora/ha # density 
    dens.ha.n <- muN.noca/ha 
    dens.ha.o <- muN.olym/ha 
    dens.ha <- mean(N[])/ha 
     
    } #end: model 
     
    ",file=file.name) #end: cat 
   
observer <- as.numeric(droplevels(obs)) 
observer[is.na(observer)] <- max(observer,na.rm=T) 
sum(is.na(observer)); unique(observer); hist(observer) 
PTYR <- as.numeric(as.factor(PTYR)) 
 
#create some useful indices to pass to jags 
yr <- matrix(0,length(Year)/10,10); dim(yr); str(yr) 
for (i in 2005:2014) {yr[,(i-2004)] <- which(Year==i)} 
if (park=="all") { 
    mora <- which(Park=="MORA"); noca <- which(Park=="NOCA") 
    olym <- which(Park=="OLYM") 
    yr.m <- matrix(0,length(which(Park=="MORA"))/10,10); dim(yr.m) 
    yr.n <- matrix(0,length(which(Park=="NOCA"))/10,10); dim(yr.n) 
    yr.o <- matrix(0,length(which(Park=="OLYM"))/10,10); dim(yr.o) 
    for (i in 2005:2014) { 
      yr.m[,(i-2004)] <- which(Year==i&Park=="MORA") 
      yr.n[,(i-2004)] <- which(Year==i&Park=="NOCA") 
      yr.o[,(i-2004)] <- which(Year==i&Park=="OLYM") 
    } 
} #end: if (park=="all") 
   
win.data <- list(y=y, 
                   surveyid=surveyid, 
                   maxd=maxd, 
                   dclass=dclass, 
                   tinterval=tinterval, 
                   nsurveys=nsurveys, 
                   nobs=nobs, 
                   nbreaks=nbreaks, 
                   delta=delta, 
                   mdpts=mdpts, 
                   J=J, 
                   ntrans=ntrans, 
                   tran=as.numeric(tran), 
                   nobservers=nobservers, 
                   observer=observer, #as.numeric(droplevels(obs)), 
                   PTYR=PTYR, 
                   day=as.vector(scale(day)), 
                   forest=forest, 
                   dense=dense, 
                   elev=as.vector(scale(elev)), 
                   noise=as.vector(scale(noise)), 
                   hour=as.vector(scale(hour)), 
                   slope=as.vector(scale(slope)), 
                   aspect=as.vector(scale(aspect.b)), 
                   Park=as.numeric(Park), # factors 1=MORA, 2=NOCA, 3=OLYM 



 

60 
 

                   nyears=nyears, 
                   Year=Year-2004, 
                   PASanom=as.vector(scale(PASanom)), 
                   MSTanom=as.vector(scale(MSTanom)), 
                   yr=yr, # indices for Year 
                   mora=mora, noca=noca, olym=olym, # indices for N in each park 
                   yr.m=yr.m, yr.n=yr.n, yr.o=yr.o #indices for Park-Year 
) 
   
inits <- function() list(N=Nst) #,a0=runif(1,-1,1)) 
   
params <- c("musigma", 
              "mupdet", 
              "mupavail", 
              "bayesp.pd", 
              "bayesp.pa", 
              "sigma0", 
              #"obseff", 
              #"sd.obs", 
              #"sd.py.pd", 
              #"sd.yr.pd", 
              #"sd.tr.pd", 
              #"b.p1", #"b.p2", 
              "a0", 
              #"b.a1", #"b.a2", 
              #"b0","b1", 
              "b2","b3", #"b4", 
              "parkeff", 
              "yeareff", 
              "sd.year", 
              "bp", 
              "muN.mora","muN.noca","muN.olym", 
              "sd.tran", 
              "totN.m","totN.n","totN.o", 
              "totN", 
              "dens.ha.m","dens.ha.n", "dens.ha.o", 
              "dens.ha", 
              "N.yr.m","N.yr.n","N.yr.o", 
              "fit.pd","fit.new.pd","fit.pa","fit.new.pa", 
              "N.yr" 
) 
   
ni <- 40000 
nt <- 30 
nb <- 10000 
nc <- 3 
 
***#update jags output file name as needed 
system.time(OSFLout1.jags <- jags(win.data,inits,params,file.name,n.chains=nc, 
            n.thin=nt,n.iter=ni,n.burnin=nb,parallel=TRUE)) 
 
sink(file=paste(outfile,".txt",sep=""),split=T) 
print("Fitted models of detection, abundance") 
print(paste("Maximum detection distance (maxd) =",maxd)) 
print(paste("% discarded to ensure independence between detection interval”, 
            “& distance (truncPct) =",truncPct)) 
print(paste("Finding global effects and trends with climate effects")) 
 
***#update models as needed 
print("#log(lambda[k]) <- parkeff[Park[k]] + yeareff[Year[k]] + bp[Park[k]]*Year[k] +     
       traneff[tran[k]] + b2*PASanom[k] + b3*MSTanom[k] # + b4*PASanom[k]*MSTanom[k]") 
print("#log(sigma[k]) <- log(sigma0)") #+ ptyreff.pd[PTYR[k]]") #+ obseff[observer[k]] 
print("#logit(q[k]) <- a0") 
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***#update jags output file name as needed 
print(OSFLout1.jags,digits=3) 
sink() 
 
#evaluate fit 
e.obs.pd <- OSFLout1.jags$sims.list$fit.pd 
e.pred.pd <- OSFLout1.jags$sims.list$fit.new.pd 
mu.bayespd <- mean(OSFLout1.jags$sims.list$bayesp.pd) 
e.obs.pa <- OSFLout1.jags$sims.list$fit.pa 
e.pred.pa <- OSFLout1.jags$sims.list$fit.new.pa 
mu.bayespa <- mean(OSFLout1.jags$sims.list$bayesp.pa) 
mean(e.pred.pd > e.obs.pd) # SA bayesp.pd 
mean(e.obs.pd/e.pred.pd) 
mean(e.pred.pa > e.obs.pa) # SA bayesp.pd 
mean(e.obs.pa/e.pred.pa) 
par(mfrow=c(2,2)) 
ppi <- 300 
jpeg(file=paste(outfile,".fitStats-%d.jpg",sep=""),width=6*ppi,height=6*ppi,res=ppi) 
plot(e.obs.pd,e.pred.pd,frame.plot=F,main=paste(species,"detected"),cex.lab=1.25, 
     xlab="Discrepancy of observed data",ylab="Discrepancy of simulated data") 
abline(0,1,lwd=2) 
mu.obs <- mean(e.obs.pd); mu.pred <- mean(e.pred.pd) 
legend(min(e.obs.pd),max(e.pred.pd),title="Mean discrepancy",bty="n", 
       legend=c(paste("Obs:",round(mu.obs)),paste("Sim:",round(mu.pred)))) 
legend(max(e.obs.pd),min(e.pred.pd),xjust=1,yjust=0,bty="n", 
       legend=c(paste("Bayes p:",round(mu.bayespd,3)), 
       paste("LOF:",round(mean(e.obs.pd/e.pred.pd),3)))) 
plot(e.obs.pa,e.pred.pa,frame.plot=F,main=paste(species,"available"),cex.lab=1.25, 
     xlab="Discrepancy of observed data",ylab="Discrepancy of simulated data") 
abline(0,1,lwd=2) 
mu.obs <- mean(e.obs.pa); mu.pred <- mean(e.pred.pa) 
legend(min(e.obs.pa),max(e.pred.pa),title="Mean discrepancy",bty="n", 
       legend=c(paste("Obs:",round(mu.obs)),paste("Sim:",round(mu.pred)))) 
legend(max(e.obs.pa),min(e.pred.pa),xjust=1,yjust=0,bty="n", 
       legend=c(paste("Bayes p:",round(mu.bayespa,3)), 
       paste("LOF:",round(mean(e.obs.pa/e.pred.pa),3)))) 
dev.off() 
 
pdf(file=paste(outfile,"Chains.pdf",sep="")) #save all plots in 1 hi-res file 
plot(OSFLout1.jags,ask=FALSE) 
print("ok") #could use 30 of these to handle "Hit <Return> to see next plot:" 
dev.off() 
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Appendix 5: Summary of park-structured models without 
climate covariates, including exploration of models based on 
covariates of detection 
This summary of preliminary results for four species is an excerpt from the unpublished report 
“NCCN_landbird_trends_2005-2014_preliminary_summary.docx”, on file with the NPS NCCN. 

NCCN Landbird Trends 2005-2014: Preliminary Summary 
Prepared by Chris Ray, The Institute for Bird Populations, cray@birdpop.org 

Executive summary 
Here, we document the results of our first model fits, showing raw and effort-adjusted trends in 
counts for each of several species, followed by modeled estimates of total population size across the 
sampled plots. In these preliminary models, we estimate detection probability including observer 
effects for some species, and explore temporal trends in conjunction with fixed effects of park, 
random effects of year, park-by-year interactions, and random effects of transect. Park-by-year 
interactions were not generally supported, and trends were rare among the commonly observed 
species.  

Counts 
Raw counts were affected by interannual variation in the number of point-counts and the number of 
counts per point: 2 counts per point during 2005-2010, 3 counts per point during 2011-2014. For 
each species, unadjusted (raw) annual counts are plotted next to effort-adjusted annual counts per 
point (adjusted for number of point-counts and counts per point). Years 1-10 represent 2005-2014. 

Detection models 
Detection was modeled in two parts: availability was estimated via removal sampling (birds detected 
earlier are presumably more available for detection), and perceptibility was estimated via distance 
sampling (birds detected at greater distances are presumably more perceptible). At the level of 
individual parks, we found little support for effects of day and hour on availability, or for effects of 
observer on perceptibility. Observer and day are often confounded with park. Adding an observer 
effect at the 3-park level made little to no improvement over an intercept-only model, even when the 
intercept-only model was inadequate.   

Abundance models 
In the models summarized here, abundance (N) was estimated only for the points surveyed, and only 
for the area around each point in which the species was relatively perceptible. For the species 
presented here, the radius of this area varied from 30 m (RUHU) to 250 m (OSFL). Raw total counts 
don’t approach Np (where p is detection probability) because N includes estimates for points that 
were not surveyed each year (including alternating panels). Mean annual N is 1/10th of “totN” in the 
model outputs here, because totN is summed across 10 years.  
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Swainson’s thrush – raw and effort-adjusted data 

 
Swainson’s thrush – model results 
Summary: The simplest detection model (no covariates) appears adequate according to Bayesian p-
values. The scale parameter for the half-normal detection function was estimated at 47.383 (m). 
Detection probability was 0.466 within 90 m of the survey point. Species availability was high. Park, 
year and transect effects on abundance were supported, but there was no support for a temporal trend 
overall or for effects of a park-by-year interaction. Species density per hectare was estimated at 
0.254, for a mean annual population size (w/in 90 m of all survey points, annual and alternating) of 
1892 birds. 

Abundance model:  

log(lambda[k]) <- parkeff[Park[k]]+yeareff[Year[k]]+traneff[tran[k]]+b1*Year[k] 

Detection models: 

log(sigma[k]) <- log(sigma0) 

logit(q[k]) <- a0 
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Parameter estimates: 

JAGS output for model 'SWTH-fixPk-rndYr-rndTran-trend', generated by jagsUI. Estimates based on 
3 chains of 25000 iterations, burn-in = 5000 iterations and thin rate = 5, yielding 12000 total samples 
from the joint posterior. 

SWTH mean sd 2.50% 50% 97.50% overlap0 F Rhat n.eff 
meansig 47.383 1.135 45.31 47.301 49.854 FALSE 1 1 4214 

meanpdet 0.466 0.014 0.44 0.465 0.497 FALSE 1 1 4216 

meanpavail 0.948 0.005 0.938 0.949 0.958 FALSE 1 1 9467 

a0 0.639 0.04 0.561 0.638 0.717 FALSE 1 1 9384 

sigma0 47.383 1.135 45.31 47.301 49.854 FALSE 1 1 4214 

parkeff[1] -4.284 0.454 -5.184 -4.28 -3.386 FALSE 1 1.016 240 

parkeff[2] -0.489 0.303 -1.094 -0.489 0.1 TRUE 0.946 1.008 243 

parkeff[3] -3.647 0.383 -4.428 -3.638 -2.925 FALSE 1 1.034 66 

b1 0.008 0.021 -0.035 0.008 0.05 TRUE 0.671 1.001 2628 

meanN 0.646 0.027 0.59 0.647 0.697 FALSE 1 1.005 456 

sd.tran 2.146 0.183 1.806 2.138 2.513 FALSE 1 1.072 33 

sd.year 0.171 0.063 0.083 0.159 0.327 FALSE 1 1.003 1225 

totN 18915 777 17261 18938 20395 FALSE 1 1.005 456 

bayesp.pd 0.37 0.483 0 0 1 TRUE 1 1 12000 

bayesp.pa 0.478 0.5 0 0 1 TRUE 1 1 7390 

dens.ha 0.254 0.01 0.232 0.254 0.274 FALSE 1 1.005 456 

deviance 14878 104 14653 14883 15072 FALSE 1 1.002 1343 
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Townsend’s warbler – raw and effort-adjusted data 

 
Townsend’s warbler – model results 
Summary: The simplest detection model (especially the perceptibility model) might not be adequate. 
The scale parameter for the half-normal detection function was estimated at 44.447 (m). Detection 
probability was 0.428 within 90 m of the survey point. Species availability was high. Park, year and 
transect effects on abundance were supported, as well as a positive temporal trend overall, but there 
was no support for effects of a park-by-year interaction (not shown). Species density per hectare was 
estimated at 0.378, for a mean annual population size (w/in 90 m of all survey points, annual and 
alternating) of 2812 birds. 

Abundance model:  

log(lambda[k]) <- parkeff[Park[k]]+yeareff[Year[k]]+traneff[tran[k]]+b1*Year[k] 

Detection models: 

log(sigma[k]) <- log(sigma0) 

logit(q[k]) <- a0 
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Parameter estimates: 

JAGS output for model 'TOWA-fixPk-rndYr-rndTran-trend', generated by jagsUI. Estimates based 
on 3 chains of 25000 iterations, burn-in = 5000 iterations and thin rate = 5, yielding 12000 total 
samples from the joint posterior. 

TOWA Mean Sd 2.50% 50% 97.50% overlap0 f Rhat n.eff 

meansig 44.447 0.776 42.984 44.419 46.076 FALSE 1 1.02 109 

meanpdet 0.428 0.01 0.408 0.428 0.45 FALSE 1 1.02 108 

meanpavail 0.968 0.003 0.962 0.968 0.973 FALSE 1 1 3336 

a0 0.452 0.033 0.387 0.452 0.518 FALSE 1 1.001 3197 

sigma0 44.447 0.776 42.984 44.419 46.076 FALSE 1 1.02 109 

parkeff[1] -1.686 0.273 -2.233 -1.681 -1.167 FALSE 1 1.01 228 

parkeff[2] -0.356 0.234 -0.811 -0.357 0.1 TRUE 0.937 1.002 1195 

parkeff[3] -2.398 0.255 -2.908 -2.397 -1.904 FALSE 1 1.01 201 

b1 0.04 0.015 0.01 0.04 0.071 FALSE 0.992 1.001 2314 

meanN 0.961 0.033 0.896 0.96 1.028 FALSE 1 1.018 139 

sd.tran 1.684 0.115 1.472 1.68 1.92 FALSE 1 1.017 139 

sd.year 0.112 0.05 0.034 0.105 0.231 FALSE 1 1.001 12000 

totN 28122 962 26233 28111 30094 FALSE 1 1.018 139 

bayesp.pd 0.176 0.38 0 0 1 TRUE 1 1 12000 

bayesp.pa 0.453 0.498 0 0 1 TRUE 1 1 5632 

dens.ha 0.378 0.013 0.352 0.377 0.404 FALSE 1 1.018 139 

deviance 20374 108 20139 20378 20584 FALSE 1 1.038 60 
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Dark-eyed junco – raw and effort-adjusted data 

 
Dark-eyed junco – model results 
Summary: The simplest detection model was not adequate even after including an observer effect. 
The scale parameter for the half-normal detection function was estimated at 33.83 (m). Detection 
probability was 0.277 within 90 m of the survey point. Species availability was high. Park, year and 
transect effects on abundance are supported, but there was no support for temporal trend or for 
effects of a park-by-year interaction (not shown). Species density per hectare was estimated at 1.014, 
for a mean annual population size (w/in 90 m of all survey points, annual and alternating) of 7549 
birds. 

Abundance model:  

log(lambda[k]) <- parkeff[Park[k]]+yeareff[Year[k]]+traneff[tran[k]]+b1*Year[k] 

Detection models: 

log(sigma[k]) <- log(sigma0)+obseff[observer[k]] 

logit(q[k]) <- a0 
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Parameter estimates:  

JAGS output for model 'DEJU-fixPk-rndYr-rndTran-trend-obs', generated by jagsUI. Estimates 
based on 3 chains of 30000 iterations, burn-in = 10000 iterations and thin rate = 10, yielding 6000 
total samples from the joint posterior. 

DEJU mean sd 2.50% 50% 97.50% overlap0 f Rhat n.eff 

meansig 33.83 0.887 32.186 33.798 35.606 FALSE 1 1 5778 

meanpdet 0.277 0.013 0.254 0.277 0.303 FALSE 1 1 5789 

meanpavail 0.936 0.004 0.929 0.936 0.944 FALSE 1 1 6000 

a0 0.73 0.027 0.676 0.73 0.781 FALSE 1 1 6000 

sigma0 35.816 0.597 34.677 35.805 37.028 FALSE 1 1.001 1237 

yeareff[1] -0.223 0.134 -0.492 -0.22 0.03 TRUE 0.96 1 4428 

yeareff[2] 0.254 0.116 0.039 0.25 0.489 FALSE 0.989 1.004 533 

yeareff[3] 0.148 0.098 -0.033 0.145 0.346 TRUE 0.949 1.003 579 

yeareff[4] 0.006 0.087 -0.163 0.004 0.182 TRUE 0.522 1.001 1327 

yeareff[5] -0.153 0.08 -0.314 -0.151 0 FALSE 0.975 1.002 903 

yeareff[6] -0.073 0.084 -0.242 -0.071 0.094 TRUE 0.818 1.001 1494 

yeareff[7] 0.007 0.092 -0.177 0.007 0.186 TRUE 0.534 1 6000 

yeareff[8] -0.037 0.096 -0.231 -0.037 0.147 TRUE 0.667 1.001 2001 

yeareff[9] -0.033 0.11 -0.252 -0.031 0.185 TRUE 0.627 1.002 1151 

yeareff[10] 0.096 0.125 -0.15 0.098 0.338 TRUE 0.797 1.001 2434 

parkeff[1] 0.621 0.191 0.245 0.623 0.993 FALSE 0.999 1.006 307 

parkeff[2] 0.635 0.185 0.264 0.638 0.997 FALSE 0.999 1.003 777 

parkeff[3] 0.907 0.18 0.547 0.911 1.249 FALSE 1 1.001 1780 

b1 -0.017 0.023 -0.062 -0.017 0.03 TRUE 0.8 1.004 563 

meanN 2.579 0.068 2.446 2.579 2.713 FALSE 1 1.009 417 

sd.obs 0.083 0.013 0.06 0.082 0.111 FALSE 1 1.002 1488 

sd.tran 0.825 0.052 0.729 0.823 0.932 FALSE 1 1.002 867 

sd.year 0.189 0.069 0.1 0.175 0.358 FALSE 1 1.006 976 

totN 75489 1987 71588 75491 79424 FALSE 1 1.009 417 

bayesp.pd 0.058 0.234 0 0 1 TRUE 1 1.001 6000 

bayesp.pa 0.452 0.498 0 0 1 TRUE 1 1 6000 

dens.ha 1.014 0.027 0.961 1.014 1.066 FALSE 1 1.009 417 

deviance 39776 107 39563 39777 39987 FALSE 1 1.005 570 
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Varied thrush – raw and effort-adjusted data 

 
Varied thrush – model results 
Summary: Detection distance was higher for this species, and the detection model was not adequate 
even after including an observer effect. The scale parameter for the half-normal detection function 
was estimated at 72.595 (m). Detection probability was 0.313 within 180 m of the survey point. 
Species availability was high. Park, year and transect effects on abundance are supported, but there 
was no support for a trend in abundance or for effects of a park-by-year interaction. Species density 
per hectare was estimated at 0.174, for a mean annual population size (w/in 180 m of all survey 
points, annual and alternating) of 5182. 

Abundance model:  

log(lambda[k]) <- parkeff[Park[k]]+yeareff[Year[k]]+traneff[tran[k]]+b1*Year[k] 

Detection models: 

log(sigma[k]) <- log(sigma0)+obseff[observer[k]] 

logit(q[k]) <- a0 
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Parameter estimates:  

JAGS output for model 'VATH-fixPk-rndYr-rndTran-trend-obs', generated by jagsUI. Estimates 
based on 3 chains of 30000 iterations, burn-in = 10000 iterations and thin rate = 10, yielding 6000 
total samples from the joint posterior. 

VATH mean sd 2.50% 50% 97.50% overlap0 f Rhat n.eff 

meansig 72.595 2.218 68.408 72.508 77.166 FALSE 1 1.004 476 

meanpdet 0.313 0.016 0.283 0.312 0.346 FALSE 1 1.004 476 

meanpavail 0.982 0.001 0.979 0.982 0.985 FALSE 1 1.002 1262 

a0 0.254 0.027 0.201 0.255 0.307 FALSE 1 1.002 1234 

sigma0 71.601 1.566 68.575 71.583 74.696 FALSE 1 1.007 362 

obseff[1] -0.032 0.084 -0.189 -0.033 0.139 TRUE 0.659 1.003 731 

obseff[2] -0.058 0.045 -0.143 -0.059 0.03 TRUE 0.902 1.008 285 

obseff[3] 0.23 0.067 0.107 0.227 0.373 FALSE 1 1.004 435 

…          

obseff[45] 0.009 0.045 -0.077 0.009 0.097 TRUE 0.58 1 6000 

obseff[46] -0.002 0.124 -0.241 -0.004 0.244 TRUE 0.514 1.001 2538 

parkeff[1] 0.605 0.209 0.199 0.605 1.017 FALSE 0.997 1.001 2267 

parkeff[2] -0.472 0.21 -0.888 -0.473 -0.059 FALSE 0.988 1.001 1604 

parkeff[3] 0.076 0.197 -0.302 0.073 0.472 TRUE 0.65 1.002 906 

b1 0.015 0.023 -0.032 0.015 0.06 TRUE 0.758 1 3537 

meanN 1.771 0.046 1.684 1.77 1.863 FALSE 1 1.016 163 

sd.tran 1.037 0.072 0.905 1.034 1.189 FALSE 1 1.002 1072 

sd.year 0.187 0.07 0.094 0.173 0.365 FALSE 1 1.002 4005 

totN 51824 1350 49288 51804 54527 FALSE 1 1.016 163 

bayesp.pd 0.022 0.146 0 0 0 FALSE 1 1.002 6000 

bayesp.pa 0.466 0.499 0 0 1 TRUE 1 1 6000 

dens.ha 0.174 0.005 0.165 0.174 0.183 FALSE 1 1.016 163 

deviance 30545 102 30341 30546 30748 FALSE 1 1.008 304 
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Appendix 6: R script for Bayesian meta-analysis of parameter 
estimates averaged by species trait-group 
 

# Meta-analysis to determine whether trends and climate effects 
# differ by trait group 
 
# Exerpted from code file name “script4traitGroupEffectsMetaAnal.R”; complete code 
# including data prep is available from C. Ray (cray@birdpop.org 
 
# meta-analysis of trend by migration habit (e.g., ndf$trend~ndf$use.NOCA) 
library(jagsUI) 
modelType <- "trendXmig-means" 
file.name <- paste("metaAnal-",modelType,".jagsUI",sep="") 
cat(" 
    model { 
 
    # VARIABLES 
    # stat = the statistic passed to the meta-analysis (e.g., trend 
    #        or effect of PAS), previously estimated with error 
    # sd = the standard deviation of previous estimates for stat 
    # beta[i] = the mean of stat for trait group i (e.g., the mean  
    #          trend for migrants) 
     
    # PRIORS 
    for (i in 1:2) { # for 1 = migrants and 2 = residents... 
      beta[i] ~ dnorm(0,0.0001) # ...mean effects of migration habit 
    } 
    tauSp <- pow(sdSp,-2) # species residual 
    sdSp ~ dunif(0,10) 
 
    # LIKELIHOOD 
    for (i in 1:n) { # for each of n species... 
      stat[i] ~ dnorm(mu[i],tau.sd[i]) # measurement err model 
      tau.sd[i] <- pow(sd[i],-2) 
      mu[i] <- beta[mig[i]] + eps.sp[i] # full model 
      eps.sp[i] ~ dnorm(0,tauSp) # residual err 
    } 
 
    } # end model 
    ",file=file.name) # end cat 
 
mig <- ndf$use.NOCA 
levels(mig)[levels(mig)=="MIG"] <- 1 # migrants = 1 so the effect 
levels(mig)[levels(mig)=="RES"] <- 2 # is a resident effect 
jags.data <- list(mig=as.numeric(mig[-1]), # migration habit 
                  stat=ndf$trend[-1],      # fitted sp trend in N 
                  sd=trendNsd[-1],         # fitted sp sd in trend 
                  n=length(trendNsd)-1)    # count of fitted sp trends 
str(jags.data) 
 
inits <- function() list(beta=rnorm(2)) 
params <- c("beta") 
ni <- 12000; nt <- 10; nb <- 2000; nc <- 3 
system.time(out <- jags(jags.data,inits,params,file.name, 
                        n.iter=ni,n.thin=nt,n.burnin=nb,n.chains=nc)) 
sink(file="metaAnalOut.txt",split=T,append=T) 
cat("trend x mig NOCA no climate","\n","\n") 
print(out,digits=3) 
cat("\n") 
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sink() 
 
# (see “script4traitGroupMetaAnal.R” for additional examples and code) 
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