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ABSTRACT
Passive Acoustic Monitoring (PAM) is an increasingly common method for monitoring birds and other sound-producing organ-
isms at scale, but methods that digest these data streams into ecological insight remain underdeveloped. Specifically, using PAM 
and classification algorithms powered by artificial intelligence (AI) to uncover the phenology of vocal animals is an emerging 
use of these data but currently lacks standardized, repeatable methods with verified connections to biological phenomena. Here, 
we articulate specific hypotheses regarding the relationship between avian vocal activity and phenological events, and present a 
flexible, reproducible methodological pipeline for quantifying avian vocal phenology from PAM data. We applied our pipeline to 
18,568 h of audio from 185 recording sites across Olympic National Park, USA. We processed acoustic data through an AI species 
classifier (BirdNET), then filtered the output using species-specific precision thresholds established through expert review to 
minimize false positives. For 25 species representing diverse migratory strategies across two elevational strata, we used hierar-
chical generalized additive models (HGAMs) to estimate daily probabilities of vocal activity from which we extracted standard-
ized “phenometrics” describing the timing, duration, and shape of vocal activity curves. PAM-derived patterns of phenometrics 
broadly supported expectations, showing promise for future expansion of these methods. Resident species generally exhibited 
earlier and longer vocal periods than migratory species, and birds at mid-elevations showed delayed and shortened vocal phe-
nology relative to lower elevations. Many species displayed bimodal vocal patterns, with secondary peaks 30–50 days after initial 
peaks. These generalizable patterns of vocal phenology likely cue transitions in various stages of the avian breeding cycle. Late-
season vocal activity, especially in irruptive and resident species, highlighted the method's capacity to capture ecological tran-
sitions beyond the breeding season, but robust inferences require further ground-truthing. This study advances the use of PAM 
for phenological research, offering outputs that can inform long-term monitoring and detect phenological shifts in response to 
environmental change. We make recommendations for methodological and technological advancement, and highlight the need 
for studies that integrate PAM data and field-based observation to further strengthen the links between observed phenometrics 
and confirmed biological states of vocal organisms.

1   |   Introduction

The vast proliferation of passively collected acoustic data over 
the past decade has allowed researchers to collect information 

about vocal animals at an unprecedented pace and scale (Sugai 
et al. 2019). This increase in the prevalence of passive acoustic 
monitoring (PAM) has been facilitated by technological inno-
vation in the hardware used to collect and store the data, the 
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computing power needed to process it, and the software used 
to analyze it. Notably, the development and application of arti-
ficial intelligence (AI) to process the resulting datasets—often 
at the scale of terabytes to petabytes—has widened a crucial 
bottleneck in the PAM process from data collection to biolog-
ical inference (Sethi et  al.  2024). Analytical advances in this 
process have focused primarily on improving the classification 
of species using AI models (Kahl et al. 2021; Lapp et al. 2023; 
Pérez-Granados 2023) and defining appropriate ecological mod-
els for determining site occupancy and abundance from acous-
tic data (Cole et al. 2022; Rhinehart et al. 2022; Navine, Camp, 
et al. 2024). Increasingly, attention is focusing on bridging the 
fields of population biology and behavioral ecology, connecting 
landscape-scale patterns in PAM-derived data with behavior at 
the level of species and individuals (Kitzes et al. 2021; McGinn 
et al. 2023; Knight et al. 2024), and imagining acoustic record-
ings as a trove of untapped ecological signal.

Of the various potential signals contained within bioacous-
tics—including occupancy, abundance, behavior, and demogra-
phy—acoustic records are particularly well-suited to describing 
the phenology of vocal species throughout their annual cycle 
(Oestreich et  al.  2024). Across taxa, shifts in phenology—in 
the timing of breeding, migration, and other critical life history 
events—have been widely documented in response to climate 
change (Thackeray et al. 2016). Early investigations of phenol-
ogy using PAM employed acoustic indices as abstract proxies for 
species- or community-level “biophony” (Pijanowski et al. 2011), 
circumventing the need to identify individual sounds that com-
prise the biophony, under the assumption that vocal behavior 
is a proxy for phenological events such as the arrivals and de-
partures of migratory birds or the onset of breeding condition 
(Oliver et al. 2018; Buxton et al. 2018). Applying AI classification 
to acoustic data builds on this theoretical framework and yields 
species- (or finer) level classifications that potentially inform 
how phenological distributions embedded in bird vocalizations 
are generalizable to, or differ among, species, populations, and 
individuals, including variation by categories like functional 
group, migratory strategy, region, age, or sex. The greater spec-
ificity of AI-classified sounds also makes it possible to directly 
test hypothesized correlations between vocal activity and partic-
ular behavioral states or phenophases with field-collected obser-
vations or validated data, which is key to interpreting acoustic 
data streams at scale.

PAM provides opportunities to study phenological shifts across 
the entire span during which a life-history event occurs within a 
population—to quantify, summarize, and compare phenological 
phenomena in terms of continuous processes or “phenological 
distributions”—rather than as a single measurement such as 
date of first flower or first egg laid (Inouye et al. 2019). Because 
acoustic recorders can be readily deployed for months at a time 
and collect effectively continuous data, resulting data on full 
phenological distributions enable testing hypotheses that are 
key to understanding the phenological responses of individuals, 
populations, and species to environmental change (Figure  1). 
For instance, continuous acoustic data could be used to capture 
the entire duration or variance of a phenophase, such as egg-
laying, at the population level, or to predict phenological overlap 
between two interacting species as overlap in the integrals of 
two curves.

Studying temporal patterns in the vocalization frequency of birds 
may also spark new ecological and natural history insight (Tosa 
et al. 2021; Ross et al. 2023; Kitzes et al. 2025). For example, early 
ornithological studies of oscine passerines have long provided 
evidence for a link between the singing frequency of breeding 
male birds and phases of the breeding cycle in temperate regions 
(Slagsvold 1977; Greig-Smith 1982; Lampe and Espmark 1987) 
as male songbirds defend territories, attract mates, and main-
tain pair bonds; their singing rates peak at the onset of breeding 
and are followed by a non-linear decline. This peak singing rate 
is often associated with peak detectability in point count surveys 
(Strebel et  al.  2014; Furnas and McGrann  2018)—which has 
been used as a metric for studying phenological shifts over many 
decades (Socolar et  al.  2017). But passive acoustic data—with 
its intensive sampling over near-continuous time—has the po-
tential to provide much more nuanced quantitative tracking of 
vocal detectability than identifying a single peak. Indeed, vocal 
activity extends beyond breeding-associated song, encompass-
ing fledging and post-fledging dispersal, social flocking behav-
ior, molt, and molt-migration (Hahn et al. 2015; Gilbert 2022), 
and beyond the geographically biased paradigm of male bird-
song, encompassing female song and non-breeding song (Odom 
et al. 2014; Rose et al. 2022; Wu et al. 2025). Thus, PAM has great 
potential to broaden our understanding of birds' habitat use 
and phenological cycles throughout and beyond the breeding 
season (Figure 1c), if methodological hurdles involving sound-
scape recording, data processing, and analysis can be overcome. 
Without standardized methods guided by clearly articulated hy-
potheses about vocal activity and phenological events, much of 
the potential information embedded in PAM datasets remains 
underutilized.

Here, we present a flexible, reproducible workflow for modeling 
avian vocalization frequency over continuous time and extract-
ing potentially relevant phenophases. We illustrate this process 
with birds, using BirdNET to automate avian species identifica-
tion within recordings, and perform validation to minimize false 
positive detections. We then fit hierarchical generalized additive 
models (HGAMs) to derive several vocal phenometrics that de-
scribe the shape, extent, and duration of vocal activity. We apply 
this methodology to an acoustic dataset of 18,568 audio-hours 
recorded across Olympic National Park, Washington, USA, and 
describe vocal phenology for 25 diurnal bird species that vary 
in migratory strategy and elevational range. This workflow is 
designed for flexibility, as it can accommodate a variety of clas-
sifiers, scale to large datasets, and is applicable to any sound-
producing taxa with seasonal patterns.

Using the derived phenometrics, we test multiple hypotheses 
about vocal activity in birds: (1) vocal frequency over the course 
of a temperate-breeding bird's summer season is unimodal with 
respect to time, with peak vocal activity corresponding largely to 
early breeding season; (2) resident species' vocal activity curves 
will be identifiable by non-zero probabilities of vocal activity in 
the pre-breeding season, whereas migratory species will exhibit 
narrower windows of vocal activity within the annual cycle, 
bracketed by their arrival and departure; and (3) vocal phenology 
will shift with elevation, with later onset and shorter duration 
at higher elevations. These hypotheses are broadly supported 
by the avian ecology literature (Perrins 1970; Hahn et al. 2015; 
Boyle et  al.  2016), so demonstrating them with acoustic data 
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would provide proof-of-concept that PAM can offer robust infer-
ence on avian phenology. As acoustic datasets continue to grow 
globally, our approach offers a scalable solution for unlocking 
the ecological potential of PAM and applying it to pressing ques-
tions in temporal ecology and biodiversity monitoring.

2   |   Methods

2.1   |   Field Methods

In 2021, we deployed autonomous recording units (ARUs; 
SM4s, Wildlife Acoustics, Maynard, PA) across Olympic 
National Park, Washington, USA, to monitor avian vocal activ-
ity along environmental gradients during the breeding season 
(April—September). Although ARUs were originally deployed 
as part of a broader project targeting Strix owls, these devices 

simultaneously recorded diurnal songbird vocalizations, provid-
ing a rich dataset for phenological analysis. Four ARUs were dis-
tributed within 5-km2 hexagons, spaced at least 500 m apart to 
minimize spatial autocorrelation (Lesmeister and Jenkins 2022). 
Hexagon selection followed a stratified random sampling design 
to capture variation across elevational gradients and habitat 
types within forested land. Forest composition was primarily 
dominated by Douglas-fir (Pseudotsuga menziesii), Sitka spruce 
(Picea sitchensis), and western hemlock (Tsuga heterophylla). 
We defined two elevation strata on the basis of U.S. National 
Park Service Inventory and Monitoring protocols for Olympic 
National Park: “Low” (< 650 m elevation, n = 64 sites) and “Mid” 
(650–1350 m elevation, n = 121 sites).

Recorders were placed 2 m from the ground on small-diameter 
trees (15–20 cm at recorder height) to minimize physical ob-
struction to the microphones. We recorded at a quality of 16-bit 

FIGURE 1    |    Schematic diagram of how avian vocal activity may relate to phenological events. (a) The vocal activity of individual birds of a species 
in a region can be summarized by a cumulative function or mean, which represents population-level vocal phenology, and variance that represents 
individual variation in individual activity. Metrics of the population-level phenological distribution, “phenometrics”, can be calculated and compared 
across species, regions, or years. (b) Phenological distributions can also be evaluated along environmental gradients, such as elevation. (c) Species-
level distributions can be further aggregated to and compared across functional groups or communities.
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WAV with a sampling rate of 32 kHz and gain of 16 dB using an 
external omnidirectional microphone standard to SM4 ARUs. 
To standardize recording quality, microphones were no older 
than 3 years and were tested and calibrated prior to field de-
ployment using an Extech 407,766 sound calibrator (Industrial 
Electronics Inc., Knoxville, TN) and Wildlife Acoustics' utility 
(Wildlife Acoustics  2024). ARUs recorded in two crepuscular 
blocks for 2 h prior to and after local sunset and sunrise, as well 
as an additional 10 min on each hour. For this analysis, we an-
alyzed the morning recordings taken 2 h following sunrise plus 
two additional 10-min samples at 0800 and 0900 h, totaling ap-
proximately 140 min of recording per day per site. Deployment 
duration averaged 42 ± 14 days per site; exact windows of de-
ployment varied by recorder depending on seasonal accessibility 
(Figure S1).

2.2   |   Acoustic Data Processing

We processed raw acoustic data through the global version of 
BirdNET 2.4, a convolutional neural network trained on glob-
ally sourced bird sounds that produces predictive labels of bird 
species in acoustic recordings (Kahl et al. 2021). We processed 
nearly 10 million consecutive, non-overlapping 3-s windows 
(i.e., the algorithm attempts a species prediction for every 3-s 
sample of audio), left the sensitivity setting at its default of 1, and 
set the minimum Confidence Score to 0.1 to maximize recall on 
the initial run.

BirdNET returns as output a table of species labels and their 
corresponding “Confidence Score” (CS), a measure between 0 
and 1, which roughly approximates how good a match the sam-
ple is to the examples of that species that the model was trained 
on. These labels are predictions, not definitive identifications 
or “detections,” and are subject to false positives, which must 
be accounted for prior to analysis, by filtering out labels below 
a certain CS, during analysis, by modeling a false positive rate 
(Chambert et al. 2018; Spiers et al. 2022; Rhinehart et al. 2022), 
or both. We chose the former thresholding approach, implement-
ing a species-specific verification protocol to account for differ-
ences in model precision across species (Wood and Kahl 2024). 
Similar to human-collected data (e.g., point counts), classifier 
outputs are also subject to false negatives, or failures to detect a 
species when it is present. We did not explicitly measure recall 
in this study, since we prioritized minimizing the incidence of 
false positives.

We selected 29 diurnal bird species commonly detected in re-
gional avifaunal surveys (Siegel et  al.  2012) for expert verifi-
cation and modeling. These species vary by taxonomic order, 
migratory strategy (i.e., resident, short-range migrant, long-
range migrant), and relative abundance within two elevation 
strata (Table 1). This selection allowed us to evaluate how vocal 
phenology varies with ecological traits and environmental 
context.

For each species, a reviewer with expertise in aural bird iden-
tification examined randomly selected BirdNET labels (3-s 
clips) across two CS ranges (0.1–1.0 and 0.95–1.0), for 200 clips 
total. The observer assigned a 0 to the clip if the focal species 
was absent, and a 1 if it was present, and additionally applied a 

vocal class label to the sample (Pieplow 2019). Samples whose 
ID could not be confidently determined were categorized as “0” 
to safeguard the validation set against possible false positives. 
We used the binary manual validation outcomes to fit logistic 
regression models for each species, predicting the probability of 
a true positive, or pr(TP), as a function of a sample's CS. Using 
the results of those regressions, we calculated species-specific 
precision thresholds corresponding to pr(TP) ≥ 0.95 and filtered 
out all BirdNET samples with a CS below the calculated thresh-
old. To illustrate sensitivity to this filtering step, we conducted 
case studies on two common species: Pacific Wren (Troglodytes 
pacificus) and Townsend's Warbler (Setophaga townsendii), in-
vestigating the extent to which different precision thresholds 
altered daily counts of BirdNET labels, the total number of re-
cording locations with labels, and estimates of phenometrics 
(Figure 2).

We tolerated a pr(TP) under 1 because, unlike in occupancy 
models, where a single false positive can “flip” site-level esti-
mates from unoccupied to occupied and severely bias estima-
tion (McClintock et  al.  2010), our analysis aimed to estimate 
call density, wherein occasional false positives amid hundreds 
to thousands of true positive detections have less of an impact 
on inference (assuming they are randomly distributed). Because 
thresholding also filters out true positive instances (some-
times hundreds to thousands), the vocalization counts repre-
sent undercounts of true vocal activity and are relative indices. 
Stringent thresholding has been shown to functionally corre-
spond to reduced effective sampling area of the ARU (Knight 
and Bayne 2019); however, we accepted this possibility as a tol-
erable trade-off for high precision.

Classifier performance could vary seasonally if bird species' vo-
calizations vary over the course of the season to the point that 
the classifier applied to the data is appreciably worse at detect-
ing or correctly labeling those sounds. This could arise by birds 
singing less crystallized songs early or late in the season, by 
differences in relative output of sound classes (e.g., songs, calls, 
drums) across the season (Figures S3 and S4), by environmen-
tal differences impacting sound transmission (e.g., leaf-out), and 
likely many more factors. It is well established that these bio-
logical phenomena vary seasonally (Wiley and Richards 1978; 
Best 1981; Blumenrath and Dabelsteen 2004), but it is generally 
unknown how classifier performance varies with them. Such 
“distribution shifts” could bias ecological analyses if they are 
unaccounted for (Navine, Denton, et al. 2024; van Merriënboer 
et  al.  2024). We assessed our existing annotations for signa-
tures of bias by elevation and season using a model comparison 
approach in the logistic regression where pr(TP) is estimated. 
We compared a “base” model (score as the only predictor) with 
models that also include ordinal day of year and elevation stra-
tum, respectively, as predictors. We compared model fit using 
Akaike's Information Criterion (AIC) to assess whether models 
containing environmental covariates explained more variation 
than our base (score-only) model.

2.3   |   Quantifying Vocal Phenology

Once data were thresholded by species, we quantified vocal 
activity as a daily “success rate” for each species at each site, 
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defined as the number of BirdNET IDs for that day divided by 
the total number of analyzed 3-s segments for that day. This bi-
nomially distributed ratio intrinsically accounts for variation in 
sampling effort over days and sites, which is common in PAM 
data, and is similar to the “call density” metric described in 
other recent work (Navine, Denton, et al. 2024).

We used hierarchical generalized additive models (HGAMs) to 
model vocal activity for each species in each of two elevational 

strata. GAMs are useful in modeling complex, non-linear or 
“wiggly” patterns such as time-series data (Heit et  al. 2024), 
whereas HGAMs allow for the predictive surface of the GAM to 
vary by levels of a grouping variable (Pedersen et al. 2019). We 
fit the HGAMs using the ‘mgcv’package in R (Wood 2017). Each 
model treated the daily success rate as a binomial response, with 
a thin-plate regression spline for ordinal day (k = 7, bs = “tp”) 
and a random intercept for ARU site to account for spatial au-
tocorrelation between measures within sites. Although we 

TABLE 1    |    We attempted to model vocal phenology for species (listed alphabetically by species code within each migratory strategy group) in low 
and mid-elevation strata if their published elevation ranges (modeled range containing 95% of observations from 2002 to 2003 point count surveys) 
at Olympic NP overlapped the stratum (Siegel et al. 2012).

Species code Common name (scientific name) Migratory strategy
Mean (SD) 

elevation (m) Range

BRCR Brown Creeper (Certhia americana) R 475 (431) 17–1394

CAJA Canada Jay (Perisoreus canadensis) R 1119 (502) 39–1730

CBCH Chestnut-backed Chickadee (Parus rufescens) R 533 (491) 8–1602

GCKI Golden-crowned Kinglet (Regulus satrapa) R 708 (597) 9–1702

NOFL Northern Flicker (Colaptes auratus) R 1232 (639) 77–1913

PAWR Pacific Wren (Troglodytes pacificus) R 542 (531) 6–1585

PISI Pine Siskin (Carduelis pinus) R 1470 (394) 100–1923

PIWO Pileated Woodpecker (Dryocopus pileatus) R 202 (144) 35–514

RBNU Red-breasted Nuthatch (Sitta canadensis) R 1148 (562) 66–1875

SOGR Sooty Grouse (Dendragapus fuliginosus) R 846 (596) 73–1875

STJA Steller's Jay (Cyanocitta stelleri) R 200 (279) 6–1061

AMRO American Robin (Turdus migratorius) SDM 378 (536) 5–1873

DEJU Dark-eyed Junco (Junco hyemalis) SDM 1192 (564) 64–1908

HETH Hermit Thrush (Catharus guttatus) SDM 1352 (334) 567–1889

VATH Varied Thrush (Ixoreus naevius) SDM 749 (575) 7–1670

BTYW Black-throated Gray Warbler 
(Dendroica nigrescens)

LDM 159 (201) 4–846

HAFL Hammond's Flycatcher (Empidonax hammondii) LDM 442 (365) 58–1331

OSFL Olive-sided Flycatcher (Contopus borealis) LDM 1293 (470) 224–1893

RUHU Rufous Hummingbird (Selasphorus rufus) LDM 654 (645) 9–1694

SWTH Swainson's Thrush (Catharus ustulatus) LDM 139 (185) 3–680

TOWA Townsend's Warbler (Dendroica townsendi) LDM 457 (352) 43–1602

WAVI Warbling Vireo (Vireo gilvus) LDM 293 (319) 4–1169

WEFL Western Flycatcher (Empidonax difficilis) LDM 336 (340) 6–1190

WETA Western Tanager (Piranga ludoviciana) LDM 227 (178) 27–647

WEWP Western Wood-Pewee (Contopus sordidulus) LDM 29 n/a

WIWA Wilson's Warbler (Wilsonia pusilla) LDM 186 (262) 3–934

YRWA Yellow-rumped Warbler (Dendroica coronata) LDM 1545 (476) 141–1897

EVGR Evening Grosbeak (Coccothraustes vespertinus) IRR 963 (664) 279–1514

RECR Red Crossbill (Loxia curvirostra) IRR 897 (649) 30–1858

Note: Key for migratory strategies: R = resident (yellow), SDM = short-distance migrant (pink), LDM = long-distance migrant (blue), IRR = Irruptive (green).
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initially experimented with cyclic splines (bs = “cc”) to model 
year-round phenology, they were inappropriate for this season-
ally constrained dataset. Datasets with full annual coverage 
may be better represented by cyclic splines.

We attempted to fit HGAMs to any species-by-elevation stra-
tum combination for which 5 or more ARU locations had 1 or 
more BirdNET predictions above our species-specific threshold 
(Table  2) for any day of recording. We made no assumptions 
about the breeding occupancy status of birds at each ARU lo-
cation and assumed that birds moved over the course of the re-
cording season. We also assumed the number of individuals per 
species captured by each ARU is a latent quantity that varies 
with respect to time, microhabitat suitability, positions of in-
dividual territories, and other factors. Thus, the models we fit 
represent a population-level phenological distribution of vocal 
activity over the migration and breeding seasons; an emergent 
property of many individuals' vocal outputs, which is inclu-
sive of, but not limited to, the vocal activity of birds on occu-
pied breeding territories. Adaptations of this method, which 
endeavor to estimate vocal activity of individuals or at specific 

recording locations (e.g., as for occupancy or density analyses) 
would need to calibrate vocal activity with additional data on 
the number of individuals present at the site.

We used each HGAM to predict vocalization probabilities for 
each species-by-elevation combination over a date range that 
matched the PAM data collection efforts using the ‘predict()’ 
function. From the fitted values, we extracted the following phe-
nometrics (Figure 1a): (1) peak(s) in detectability, defined as the 
day any maximum value of predicted vocal probability exceeded 
30% of the model's highest maximum; (2) half-rise(s), the day 
at which the predicted probability of vocalization was halfway 
between a local minimum and the next chronological local max-
imum; and (3) half-decline(s), or the day at which the predicted 
probability of vocalization was halfway between a local max-
imum and the next chronological local minimum. We further 
assumed that each species has a defined vocalization pheno-
period, during which it is both present and vocally detectable 
within a breeding season. Thus, we used the difference between 
the (first) half-rise and the (final) half-decline to summarize (4) 
seasonal duration of the phenoperiod. When, at the start and/or 

FIGURE 2    |    Illustration of how classifier precision threshold can influence effective sample size and phenological patterns in acoustic data. (Top) 
Counts of BirdNET detections for two common species at Olympic National Park, thresholded by different true-positive probabilities. (Bottom) As 
the true-positive threshold becomes more stringent and more BirdNET predictions are filtered out of the dataset, the number of recording locations 
with BirdNET detections decreases for Townsend's Warbler.
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end of the modeled seasonal period, the probability of vocaliza-
tion was predicted to be within at least 30% of the seasonal max-
imum, we used the first or last date of the monitoring period as 
the start and/or end of the phenoperiod, respectively. These phe-
nometrics enabled standardized cross-species and cross-stratum 
comparisons of vocal phenology.

3   |   Results

3.1   |   Acoustic Data Processing

Verifying 200 samples for each of 29 species required approx-
imately 160 observer hours, or 5.5 h per species. The rela-
tive distribution of vocal classes (songs, calls, etc.) within the 
200-sample verification sets varied widely by species, but in 
most cases, for birds with song, the majority of samples belonged 
to the “song” class (Table S1).

The predicted minimum Confidence Score (CS) corresponding 
to a true positive rate of at least 95% varied widely by species 
(Table  2). Thresholding the data reduced the total number of 
BirdNET IDs by roughly half, though removal rates varied sub-
stantially by species. For example, filtering Pacific Wren data re-
tained 67% of total labels, whereas Townsend's Warbler retained 
only 6%.

Exploring the impact of thresholding on the BirdNET output 
of Pacific Wren and Townsend's Warbler depicted the con-
sequences of using increasingly stringent values of pr(TP) 
(Figure 2). For the wren, whose 95% precision threshold was 
CS = 0.41, both the number of sites with labels as well as phe-
nometric estimates were robust to thresholding except for at 
the 0.99 threshold, where no phenoperiod was estimated from 
the remaining data (Figure  2, Figure  S2). For the warbler, 
whose 95% precision threshold was CS = 0.87, thresholding 
led to increasingly steep reductions in the number of locations 
that contained any labels for that species (Figure  2). At the 
most stringent threshold (0.99), seasonal patterns in vocal 
activity were retained, but phenometric estimates shifted by 
several days (Figure S2).

We assessed our verification method post hoc for evidence of 
classifier performance shifts over time and/or space by com-
paring our base model explaining pr(TP) with only “score” as 
a predictor to models also including ordinal day of year and el-
evation stratum, respectively. On the basis of AIC model com-
parison, our base model was better ranked than a model with 
elevation for 89% of species (16/18) whose vocal activity was 
modeled in both elevation strata (Table S3). Our base model 
was also better ranked than a model with ordinal day of year 
for 72% of species (21/29; Table S3), indicating that a minority 
of species may have raw phenological signals in vocalization 
biased by seasonal changes in classifier efficacy. Predicted 
pr(TP) for those species fell below 0.95 for extreme values of 
day of year (Figures S5 and S6). When the 95% threshold was 
applied to the validation datasets, it greatly reduced or elimi-
nated most of the false positive samples that drove the relation-
ships with day of year and elevation stratum (Figures S7 and 
S8), indicating that controlling false positives by thresholding 
may be sufficient for estimating unbiased relative indices of Sp
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vocalization intensity across the environmental covariates im-
portant to this study.

3.2   |   Pipeline and Model Performance

Our analytical pipeline processed over 10 million three-second 
audio segments collected across 185 ARU deployments. BirdNET 
identified millions of initial candidate labels, which, following 
expert-informed filtering, yielded sufficient data for modeling 
25 of the 29 species on which verification was performed; 22 
and 23 species in Low and Mid elevation strata, respectively 
(Table 2). Modeling performance varied by species and stratum. 
Most species-elevation models exhibited deviance explained 
values exceeding 40% (Table S2). Models for the Mid and Low 
elevation strata had similar average deviance explained values 
(Low, 0.588; Mid, 0.604; Table S2).

3.3   |   Phenological Patterns

GAMs flexibly fit curves to detection data, producing a variety 
of shapes (Appendix, Figure A1). The most common shape of 
fitted vocal activity was a single peak, exhibited by 47% (11/23) 
and 59% (13/22) of species in the Low and Mid-elevation strata, 
respectively. A bimodal curve was the second most common 
shape, exhibited by 8 species in each stratum (34%–36%). For 
these species, on average, the first peak occurred May 20–21 
in both elevational strata, whereas the second occurred on 6 
July in Low elevations and 16 July in Mid elevations. No peaks 
were detected for four species in the low-elevation stratum 
(Golden-crowned Kinglet [Regulus satrapa], Northern Flicker 
[Colaptes auratus], Pileated Woodpecker [Dryocopus pileatus], 
and Red-breasted Nuthatch [Sitta canadensis]). Phenoperiod 
could not be defined for two species in the Low stratum 
(Northern Flicker and Red-breasted Nuthatch) and one spe-
cies in the Mid-elevation stratum (Steller's Jay [Cyanocitta 
stelleri]) because of start or end dates that were not identifiable 
by the model.

All but 3 resident species at both elevation strata were discern-
ibly vocal (their vocal activity rate was > 30% of their seasonal 
maximum rate) at the start of the recording period, April 1, as 
were two short-distance migrants, American Robin (Turdus 
migratorius), and Dark-eyed Junco (Junco hyemalis), at low el-
evations. In contrast, no long-distance migrant exhibited dis-
cernible increases in vocal activity until 1 May at the earliest 
(Hammond's Flycatcher [Empidonax hammondii] in the mid-
elevation stratum).

As measured by the half-rise, vocal phenoperiods began ear-
lier on average in the Low elevation stratum, and for residents 
and short-distance migrants (Figure 3, Figure 4). Within the 
low-elevation stratum, the start date varied more between 
residents and long-distance migrants, with long-distance 
migrants beginning their vocal phenoperiod 34 days later on 
average than residents (23 May vs. 18 April). In contrast, the 
start date was more uniform across migratory strategies in 
the Mid-elevation stratum—the mean start dates of residents, 
short-distance migrants, and long-distance migrants were all 
within 12 days of each other (12–24 May). Irruptive species 

(Evening Grosbeak [Coccothraustes vespertinus] and Red 
Crossbill [Loxia curvirostra]) had later start dates compared 
to any other group.

Phenoperiod duration was longest in residents, averaging 
94 days, moderate in short-distance migrants (88 days), and 
shortest in long-distance migrants (63 days). Elevation influ-
enced both the timing and duration of vocal phenology. In 
the Mid-elevation stratum, peak vocal activity within a spe-
cies lagged by approximately 17 days on average compared to 
low-elevation sites, and phenoperiods were typically shorter 
by 6 days.

Late-season vocal activity (> 20 July) was prominent in several 
species, including Red Crossbill, Evening Grosbeak, Chestnut-
backed Chickadee (Parus rufescens), and Golden-crowned 
Kinglet.

4   |   Discussion

A technological revolution in passive detection methods is trans-
forming the study of wildlife ecology, but data streams are out-
pacing methodological development of appropriate analytical 
pipelines for end-user output. We used widely accessible meth-
ods, including a passively collected acoustic dataset, an off-the-
shelf machine-learning algorithm, and hierarchical generalized 
additive models, to characterize avian vocal activity as pheno-
logical distributions that can be quantified and compared across 
ecological units of interest. Collecting data on avian breeding 
phenology typically involves handling wild birds or intensive 
field efforts; although the insights gained from these high-effort 
methods are valuable, even optimal for some study aims, they 
are constrained in scope. For some questions, passive methods 
of data collection can minimize impact on birds and increase 
the capacity to test hypotheses at larger spatial scales and for un-
derstudied species. Although PAM is now widely recognized for 
its capacity to detect species presence and estimate occupancy, 
its application to phenological questions has been limited by a 
lack of standardized and ground-truth workflows. Our method-
ological pathway here lays the groundwork for using passively 
collected acoustic data as a broadscale, accessible source of phe-
nological insight.

4.1   |   Phenological Insights

Our first hypothesis concerned the generalizability of the shape 
of a temperate-breeding bird's phenoperiod. Nearly all species 
showed strong seasonality in their vocal output, with half-rises 
in vocal activity appearing between 1 May and 1 June for most 
species. This corresponds to the period encompassing the ar-
rival (for migratory species) and initiation of nesting by most 
breeding birds in low and mid-elevation forests of the Pacific 
Northwest (Ray et al. 2017; Robinson et al. 2019). Increases in 
song output and breeding-associated vocalizations (e.g., drum-
ming) likely comprise the bulk of this peak. Song, with its many 
functions during the breeding period of passerine birds—in ter-
ritorial arbitration, mate attraction, and pair-bond strengthen-
ing—is arguably one of the most extensively studied topics in 
bird biology and evolution. Song output, complexity, repertoire 
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size, and detectability have all been documented in many stud-
ies of passerine birds as peaking during the early breeding sea-
son, and specifically during the periods of nest-building and 
egg-laying (Slagsvold  1977; Lampe and Espmark  1987; Merilä 
and Sorjonen 1994; Strebel et al. 2014). The ubiquity of peaks in 
the early breeding season of nearly every species we modeled re-
flects this well-documented relationship between birdsong and 
breeding.

In support of our second and third hypotheses, we found con-
sistent patterns in vocal activity with respect to both migra-
tory strategy and elevation. The vocal phenoperiods of resident 
birds tended to begin earlier and persist longer than those of 
migratory or irruptive species. In most cases, residents and 
some short-distance migrants were already vocally active at 
the start of the sampling season (1 April), and some were even 
at or near a peak in vocal activity, whereas nearly all long-
distance migrants exhibited half-rises between 1 May and 1 
June (Appendix, Figure A1). This result is consistent with the 
capacity of residents and short-distance migrants to respond 

rapidly to favorable local conditions and initiate breeding soon 
after winter (Newton 2023) as well as phenological differences 
in food and habitat resources utilized by residents compared to 
long-distance migrants (Youngflesh et  al.  2023). This pattern 
also reflects the tendency of residents to utilize vocal signals 
year-round for social functions besides breeding (Keating and 
Reichard 2021; Rose et al. 2022), which may make the half-rise 
a less accurate measure of breeding onset specifically for res-
idents than it is for migratory birds when a species-level clas-
sifier is used. Red Crossbill, known for its nomadic tendencies 
and resource-tracking behaviors, exhibited peaks in vocal ac-
tivity in late summer, likely reflecting local recruitment related 
to the ripening of conifer seeds (Hahn 1995). Elevational delays 
in phenology—averaging 16 days for peak activity between Low 
and Mid strata—reflect temperature gradients and phenological 
delays observed in montane systems (Saracco et al. 2019). These 
quantifiable shifts across elevations and functional groups pro-
vide a foundation for building phenological reaction norms 
(Inouye et  al.  2019; Coe et  al.  2021), key to assessing pheno-
logical sensitivity to change over environmental or life-history 

FIGURE 3    |    HGAM-estimated timing and duration of the vocal phenoperiod of 25 common breeding bird species (Table 1) in Olympic National 
Park. Black dots indicate peaks in vocal activity; black triangles indicate vocal activity within 30% of a local peak at the start of recording. Horizontal 
bars indicate duration of vocal activity, as calculated by the difference between the last half-decline (or end boundary) and the first half-rise (or start 
boundary).
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gradients (Visser et  al.  1998; Youngflesh et  al.  2023; Tonelli 
et al. 2024).

4.2   |   Late-Season Phenology

Many species exhibited second peaks within their vocal 
phenoperiod. In temperate North America, peaks in vocal 
activity in late summer are not nearly as well described as 
breeding-season song, nor are their functions as well under-
stood. Depending on their timing relative to the first peak, 
as well as their composition (songs vs. calls), second peaks 
could be associated with late-season breeding, with post-
breeding activities, or with both. Second peaks in song out-
put, specifically, have been noted in previous studies focused 
on singing activity in passerines during the breeding season, 

but are very rarely studied in their own right (e.g., Greig-
Smith 1982, but see Slagsvold 1977). Such reprises in song late 
in the breeding season could be linked to renesting attempts 
after nest failure, singing activity of unpaired males (Merilä 
and Sorjonen 1994), or onset of second broods in species that 
clutch doubly (Bruni and Foote 2014). The second vocal peak 
we observed for Pacific Wren in late June at low elevation, for 
example, may be comprised at least partly of male song, as 
they are known to initiate second broods as late as mid-July 
(Toews and Irwin  2020). In contrast, second peaks in vocal 
activity occurring in late July and August are more likely to 
consist primarily of calls and correspond to post-breeding 
phases important to birds' life histories, such as upslope re-
source tracking and molt-migration (Boyle and Martin 2015; 
Wiegardt et al. 2017) or coordination of mixed flocks (Hobson 
and Wilgenburg  2006). AI classifiers that distinguish vocal 

FIGURE 4    |    The estimated dates of the onset (top) and peak (middle), as well as the duration (bottom) of vocal phenoperiod in breeding birds in 
Olympic National Park vary substantially by both elevation and species' migratory strategy.
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classes within species would facilitate the ecological interpre-
tation of these intriguing late-season peaks.

The final half-decline of vocal activity is valuable in deter-
mining the duration of the vocal phenoperiod. It could also be 
useful in tracking other post-breeding activities, such as molt. 
Seasonal decreases in song output are strongly correlated to 
gonadal regression, which in many species facilitates the tran-
sition out of breeding and into their prebasic molt, an ener-
getically costly period for birds (Dawson 2008) either on their 
breeding grounds or after performing a molt–migration (Pyle 
et  al.  2018). Acoustic records that extend past the breeding 
season, paired with fieldwork that correlates acoustic activity 
with phases of the life cycle such as post-breeding dispersal, 
fledgling habitat use and survival, molt, and upslope migra-
tion, could facilitate testing of hypotheses about whether these 
critical but understudied phenophases correlate with vocal 
phenometrics, and how they relate to survivorship throughout 
birds' annual cycles.

4.3   |   Directions Forward in the Acoustic Study 
of Phenology

The field of passive acoustics is rapidly developing in ecology, as 
sensor technology and AI models converge to unlock new data 
streams for scientific inference. Our methodological pipeline 
and hypothesis-driven exploration of phenological patterns with 
a case study demonstrate the promise of PAM for future pheno-
logical studies in birds and other sound-producing organisms. 
However, we uncovered numerous outstanding methodologi-
cal and ecological questions that currently limit its robustness 
and utility and deserve research attention. We outline three key 
areas of development below:

4.3.1   |   How Well Do Detectable Phenoperiods Correlate 
With Species' Biology?

The utility of passive monitoring methods for providing in-
sights about phenology and ecology beyond occupancy ulti-
mately depends on how well-correlated vocal activity signals 
are with real biological phenomena. One important future di-
rection is thus the ground-truthing and integration of PAM 
datasets with field-collected observations, an approach that 
would represent a renaissance of the early ornithological stud-
ies rooted in natural history and ethology and advance what is 
known about the complex relationships between vocal activity 
and behavior in birds. In recent years, scientists have begun 
to connect vocal activity as measured by PAM to specific phe-
nological events observed in person for a few species, such as 
with Rock Ptarmigan (Serrurier et  al.  2024) and Savannah 
Sparrow (Moran et al. 2019), but studies like these should be 
widely replicated in order to understand how vocal phenology 
and breeding phenology vary over phylogeny, as a function of 
species' traits (e.g., migratory vs. resident), in relation to dif-
ferent vocalization types, over diel scales (e.g., dawn vocaliza-
tion vs. mid-day vs. dusk), over the entire annual cycle, and 
across broad (e.g., temperate to tropical) and narrow (e.g., ele-
vational) environmental gradients.

4.3.2   |   Where Will Technical Advancement Improve 
Inference?

The field of AI models for classification and modeling is 
developing rapidly, providing many opportunities for ad-
ditional methodological development at the intersection of 
deep learning, bioacoustics, and ecology (Xie et  al.  2023; 
van Merriënboer et  al.  2024). Increasing accessibility of the 
tools to efficiently train custom classifiers via transfer learn-
ing using the embeddings produced by AI algorithms such as 
PNW-Cnet, Perch, HawkEars, and BirdNET (Ruff et al. 2023; 
Ghani et al. 2023; Huus et al. 2025; Allen-Ankins et al. 2025) 
will allow for more efficient development of flexible classifi-
ers (e.g., a classifier specific to a call type, regional dialect, or 
even individual). Such developments open possibilities for fur-
ther testing some of the hypotheses we summarize here about 
birds' vocal phenology.

The ability of a classifier to separate breeding-specific sounds 
(e.g., song and drumming) from other vocal classes might pro-
vide the greatest leap forward in phenological information 
content provided by AI classifiers. Quantifying the singing 
rates of individual birds and tracking them over time (Rognan 
et  al.  2009) or measuring the ratios of vocal signals and/
or song types associated with different functions (Trillo and 
Vehrencamp 2005; Keating and Reichard 2021) would provide 
key behavioral context for determining whether early-season 
vocal activity is attributable to migrating birds, unpaired tran-
sients, or birds establishing breeding territories. Similarly, it 
would provide evidence for whether late-season vocal activ-
ity is attributable to late breeding or post-breeding activities. 
Additionally, models that can identify individual birds (or 
regional dialects) could be instrumental in parsing the dif-
ference between vocal activity associated with migratory pas-
sage, arrival, or breeding onset. Finally, improving classifier 
quality for data-deficient species and in geographic regions 
where existing pre-trained classifiers do not perform as well 
would accommodate more global application of this method. 
Emerging methods for efficiently training custom models atop 
pre-trained classifiers show great promise for improving clas-
sifier performance and reducing the time needed to train and 
verify models (Weldy et al. 2025).

4.3.3   |   What Biases Present New Challenges 
for Inference From Acoustic Phenology?

Although potentially unlocking vast data streams on phenol-
ogy and other ecological indicators, bioacoustic monitoring 
introduces new biases not present in traditional field data. For 
example, most PAM analysis methods—including our work-
flow here—prioritize reducing or eliminating false positives 
(maximizing classifier “precision”) via thresholding and data 
verification, at the expense of increasing false negative rates 
(depressing “recall”). Low classifier performance with respect 
to precision or recall may skew estimates of any population-
level property being measured, as we demonstrated with our 
thresholding experiment on Townsend's Warbler. Methods to 
measure and mitigate the effects of biased classifier behav-
ior on biological inference are in rapid development, and best 
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practices have yet to be established. We highlight two potential 
sources of bias within this and many PAM workflows below 
and discuss avenues for addressing them when users replicate 
this workflow.

Both precision and recall likely vary over time (e.g., as both the 
stereotypy and composition of bird vocalizations change over 
a season; Figures S3 and S4) and over space (e.g., with habitat 
or environmentally mediated sound transmission), which could 
bias analysis of vocal phenology across these dimensions if left 
unaccounted for (Navine, Denton, et al. 2024). Preliminary as-
sessment of such “distribution shifts” revealed that BirdNET 
precision varied seasonally for about one-quarter of the spe-
cies we modeled, usually negatively as the season progressed 
(Table  S3). Applying stringent, species-specific thresholds to 
the data appeared to mostly (not completely) minimize the ef-
fects of poor late-season precision by eliminating low-scoring 
false positives (Figures  S5–S8), but revealed to us the impor-
tance of more thoroughly investigating how classifier precision 
varies over environmental context. Further, it is currently un-
known how prevalent or problematic distribution shifts in re-
call are, likely because of how time-consuming it is to measure. 
Extremely variable recall across a season may plausibly lead to 
Type II Error (for example, failure to detect peaks of late-season 
vocal activity) and bias ecological conclusions. Work that sys-
tematically assesses the variability of recall across time would 
fill a key knowledge gap in the field of ecoacoustics; without 
it, a truly complete evaluation of classifier performance is not 
possible. We encourage users of PAM—whether for studies of 
occupancy, density, or, like here, phenology—to be wary of raw 
AI outputs and, especially in the absence of field-collected data, 
to identify domains over which distribution shifts could occur 
(e.g., by species, habitat, time of year, geographic region) and to 
stratify manual verification efforts of classifier outputs across 
those domains.

How to optimize validation effort for acoustic datasets and 
their diverse ecological applications is a major open question in 
terrestrial bioacoustics (Kitzes et al. 2025). Subjective choices 
in the method by which subsamples are selected for validation 
(e.g., number of samples, stratification across scores and other 
covariates), as well as the choice of threshold itself, may lead 
to unstable estimates of parameters of interest (Knight and 
Bayne 2019; Katsis et al. 2025). The subsampling protocol we 
used for verification (Wood and Kahl 2024) intentionally over-
samples BirdNET labels with high (> 0.95) confidence scores 
in order to more precisely estimate pr(TP) among high-scoring 
samples. For some species, this created a highly unbalanced 
dataset of almost all true positives with which we estimated 
pr(TP) and potentially led to imprecise threshold estimates. We 
encourage experimentation on how robust estimates of thresh-
old are to choices in thresholding method and verification ef-
fort, in order to further develop best practices. Additionally, the 
hierarchical model structure we employ here could be flexibly 
adapted to include direct estimation of false positive rate, as in 
recent extensions of occupancy models (Rhinehart et al. 2022), 
or to eliminate thresholding entirely and estimate call den-
sity directly within the model using a combination of human-
validated data and the scores themselves (Navine, Camp, 
et al. 2024; Navine, Denton, et al. 2024).

5   |   Conclusions

PAM holds great potential for understanding complex ecological 
signals across space, time, and species diversity. Here, we develop 
a series of analytical methods to extract phenological metrics 
from PAM and lay out a plausible set of explanations for their 
ecological and behavioral relevance. We demonstrate these meth-
ods using a large case study dataset of bird acoustics in the U.S. 
Pacific Northwest and test a set of hypotheses that explore how 
well passive acoustic data can encode signals of phenology across 
the breeding season of birds. Although we applied this method-
ological pipeline to a dataset in a temperate region, we encourage 
its adoption across biomes, study systems, species, and other en-
vironmental gradients, ideally paired with field studies to validate 
the ecological relevance of these patterns in different contexts. 
Pairing the ever-widening spatial and temporal reach of PAM with 
targeted naturalistic field study will both facilitate ground-truthing 
and improvement of methods and spur the development and test-
ing of previously unanswerable questions in temporal ecology.
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Appendix A

FIGURE A1    |    GAM outputs and raw (thresholded) daily success rates for 29 bird species in Olympic National Park. Colored vertical lines corre-
spond to estimated phenometrics (yellow = half-rises, blue = maxima, red = half-declines). Translucent dots represent raw (thresholded) daily success 
rates, scaled to the maximum value of predicted daily vocal rate, for legibility. The heatmap bar at the bottom of the plots depicts the total number of 
audio samples collected per day. Red “X” denotes a species × elevation combination not included in phenometric analysis because of a lack of range 
overlap and/or paucity of data.

 20457758, 2026, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.73020, W

iley O
nline L

ibrary on [03/02/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



18 of 25 Ecology and Evolution, 2026

FIGURE A1    |     (Continued)
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FIGURE A1    |     (Continued)

 20457758, 2026, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.73020, W

iley O
nline L

ibrary on [03/02/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



20 of 25 Ecology and Evolution, 2026

FIGURE A1    |     (Continued)
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FIGURE A1    |     (Continued)

 20457758, 2026, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.73020, W

iley O
nline L

ibrary on [03/02/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



22 of 25 Ecology and Evolution, 2026

FIGURE A1    |     (Continued)
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FIGURE A1    |     (Continued)
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FIGURE A1    |     (Continued)
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FIGURE A1    |     (Continued)
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