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Abundance, size, and spatial distribution of standing dead trees (snags), are key indicators of forest biodiversity
and ecosystem health. These metrics represent critical habitat components for various wildlife species of
conservation concern, including the Black-backed Woodpecker (Picoides arcticus), which is strongly associated
with recently burned conifer forest. We assessed the potential of Airborne Laser Scanning (ALS) to detect
and characterize conifer snags and identify Black-backedWoodpecker habitat using previously derived empirical
thresholds of conifer snag basal area. Over the footprint of the Rim Fire, a megafire that extended (~104,000 ha)
through a heterogeneousmosaic of conifer forests, oakwoodlands, andmeadows in the SierraNevadamountains
of California, we identified conifer snags and estimated their basal area from single-tree ALS-derived metrics
using Gaussian processes in four major steps. First, individual trees weremapped using theWatershed Segmen-
tation algorithm, resulting in 87% detection of trees with stem diameter larger than 30 cm. Second, the snag/live
classificationmodel identified snags with an overall accuracy of 91.8%, using the coefficient of variation of height
and intensity together with maximum intensity and fractional cover as the most relevant metrics. Third, the co-
nifer/hardwood snag classificationmodel utilizing themaximumheight, median height, minimum intensity, and
areametrics separated snag forest types with an overall accuracy of 84.8%. Finally, a Gaussian process regression
model reliably estimated conifer snag stem diameter (R2 = 0.81) using height and crown area, thus significantly
outperforming regionally calibrated conifer-specific allometric equations. As a result, ~80% of the snag basal area
have been mapped. Optimal and potential habitat for Black-backed Woodpecker comprise 53.7 km2 and 58.4
km2, respectively, representing 5.1 and 5.6% of the footprint of the Rim Fire. Our study illustrates the utility of
high-density ALS data for characterizing recently burned forests, which, in conjunction with information about
the habitat needs of particular snag-dependent wildlife species, can be used to assess habitat characteristics,
and thus contribute greatly to forest management and biodiversity conservation.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Standing dead trees (snags) are key indicators of forest biodiversity
and ecosystem health (Moritz et al., 2014; Noss, Franklin, Baker,
Schoennagel, & Moyle, 2006; Siitonen, 2001). They constitute a critical
component of habitat for many rare and specialized wildlife species
(Bütler, Angelstam, Ekelund & Schlaepfer, 2004; Siitonen, 2001). The
lack of spatially distributed data on snag abundances, types, and distribu-
tions has been identified as amajor constraint on the predictive capacity
of occupancy and distribution models for snag-dependent wildlife spe-
cies, including woodpeckers (Bütler, Angelstam & Schlaepfer, 2004;
Martinuzzi et al., 2009; Müller & Bütler, 2010; Tingley, Wilkerson,
Bond, Howell, & Siegel, 2014; Tingley, Wilkerson, Howell, & Siegel,
2015; Vogeler et al., 2014).Woodpeckers fulfill a keystone function in co-
nifer forests as primary cavity excavatorswhose cavities are subsequent-
ly used by numerous other species for roosting, nesting, and
concealment from predators (Daily, Ehrlich, & Haddad, 1993; Tarbill,
Manley, & White, 2015). Increasing size and frequency of forest fires in
temperate forests resulting from climate change (Flannigan, Stocks,
Turetsky, & Wotton, 2009; Miller, Safford, Crimmins, & Thode, 2009;
Stephens et al., 2013)will only exacerbate the need for detailed, accurate
mapping of snags in burned areas to informdecisions about post-fire for-
est management and biodiversity conservation.

Since the key role of forest physiognomy in wildlife habitat was
established (MacArthur &MacArthur, 1961) it has been used to explain
species occurrence and overall diversity (Farley, Ellis, Stuart, & Scott,
1994). Airborne Laser Scanning (ALS) capability to characterize detailed
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vertical and horizontal structural patterns across broad areas has been
successfully applied to advance wildlife habitat modeling (Mason
et al., 2003) and assess wildlife-habitat relationships (Bradbury et al.,
2005; Davenport et al., 2000). On the one hand, ALS data can be used
as an exploratory tool to better understand resource selection by species
of known distributions (Ackers, Davis, Olsen, & Dugger, 2015; Clawges,
Vierling, Vierling, & Rowell, 2008; Garabedian et al., 2014; Goetz,
Steinberg, Dubayah, & Blair, 2007; Smart, Swenson, Christensen, &
Sexton, 2012). However, ALS data also can be used to delineate habitat
suitability, through mapping of habitat features known to be important
for target species (Graf, Mathys, & Bollmann, 2009; Hyde et al., 2006;
Martinuzzi et al., 2009; Mason et al., 2003; Nelson, Keller, &
Ratnaswamy, 2005; Swatantran, Dubayah, Hofton, Blair, & Handley,
2008). Basal area, which is closely related to biomass (Bergen et al.,
2009) is a common measure of tree cover used in wildlife habitat stud-
ies (Cade, 1997). While not directly measured by ALS, basal area can be
derived fromALS data. Although often critical for predicting or assessing
habitat suitability for wildlife, stem diameter and basal area are not
generally available at the landscape scale. This is particularly trouble-
some in the case of burned forestswherewildlife occupancy and habitat
relationships for snag-dependent wildlife species are commonly
defined as a function of snag basal area (Martinuzzi et al., 2009;
Tingley et al., 2014).

In recent years, some studies have attempted to use ALS in relation
to dead or dying trees for applications such as estimation of dead
biomass or carbon storage (Ferster, Coops, & Trofymow, 2009; Kim,
Yang, et al., 2009), forest health or successional stage estimation
(Bater, Coops, Gergel, LeMay, & Collins, 2009; Bright, Hudak,
McGaughey, Andersen, & Negron, 2013), and wildlife habitat studies
(Martinuzzi et al., 2009). A relation betweenALS-derived heightmetrics
and dead trees has been found using a plot-based approach with vary-
ing results (Bater et al., 2009; Martinuzzi et al., 2009; Pesonen, Leino,
Maltamo, & Kangas, 2009; Sherrill, Lefsky, Bradford, & Ryan, 2008;
Solberg, Næsset, Hanssen, & Christiansen, 2006), whereas other studies
have shown LiDAR intensity data provides an effective predictor of dead
trees (Bright et al., 2013; Hudak et al., 2012; Kim, Yang, et al., 2009). At
the single-tree level, the use of intensity has been explored in ALS with
discrete returns (Korpela, Ørka, Maltamo et al., 2010; Wing, Ritchie,
Boston, Cohen, & Olsen, 2015) and full-waveform (Yao, Krzystek, &
Heurich, 2012). Korpela, Ørka, Maltamo, et al. (2010) show that dead,
defoliated trees have approximately 40–60% lower intensity than living
trees. Kim, Yang, et al. (2009) used plot-based density distributions of
intensity values rescaled to 8-bit (0–255) in a mixed coniferous forest
and interpreted the lower peak in the bimodal distribution as the pres-
ence of snags.With a single-tree approach, Yao et al. (2012) successfully
identified snags in a mixed mountain forest using full waveform ALS
with 73% and 71% of overall accuracy for leaf-on and leaf-off condition,
respectively. Interestingly, their intensity metrics were shown to be ir-
relevant for discrimination of dead and live trees; instead the outer ge-
ometry of the crown was found to be relevant (Yao et al., 2012).
Recently, Wing et al. (2015) presented a point-wise snag filtering algo-
rithm based on point location attributes, neighborhood intensity values,
and point density statistics. In thatmethod, tree segmentation and char-
acterization was only applied to points that were first classified as snag
points. Also, the method was applied to forests with different condi-
tions, and therefore snag detection rates depended on snag size (Wing
et al., 2015).

While the estimation of the stem diameter using ALS is a field of
active research given its relation with biomass, growth, tree volume,
and biodiversity factors (Maltamo & Gobakken, 2014; Popescu &
Hauglin, 2014), only a few studies have attempted to estimate stem di-
ameter and/or basal area of dead trees using a plot-based approach
(Bright et al., 2013; Martinuzzi et al., 2009; Pesonen et al., 2009;
Pesonen, Maltamo, Eerikäinen, & Packalèn, 2008). Pesonen et al.
(2008, 2009) first attempted to estimate standing dead wood with
poor results. Bright et al. (2013) predicted dead basal area and % dead
basal area in different coniferous forests affected by beetle infestation
with limited success. Martinuzzi et al. (2009) successfully characterized
the forest structure in terms of percentage of snags and DBH classes
known to be relevant for various wildlife species to delineate patterns
of wildlife habitat suitability in a mixed-conifer forest. Their study
makes use of heights and topographic data to derive area-based
DBH classes at a 20 m pixel resolution, showing important improve-
ments when supplementary forest successional data are used
(Martinuzzi et al., 2009). Nevertheless, despite the importance of
snags in forest management and biodiversity conservation, little at-
tention has been paid to the detection and characterization of
snags using ALS data for habitat mapping applications (Martinuzzi
et al., 2009; Vogeler et al., 2014; Vogeler, Yang, & Cohen, 2015). We
know of no previous example of individual snag detection and char-
acterization (type and size) using ALS data to map potential habitat
for snag-dependent wildlife species.

This study explores the use of ALS for characterizing burned for-
est in relevant terms for predicting wildlife habitat quality on the
Rim Fire, a megafire that took place in 2013 in the Sierra Nevada
mountains of California, creating large patches of medium- and
high-severity burned forest. To illustrate the utility of ALS-derived
snag characterization for forest planners and wildlife managers, we
apply it to map potential and optimal habitat across the fire footprint
for Black-backed Woodpecker (Picoides arcticus). This species has
been designated by the US Forest Service as a Management Indicator
Species (MIS) for snags in recently burned forest across ten National
Forests in California. Retaining adequate habitat for this species has
been a contentious issue in post-fire forest management efforts at
the Rim Fire and other recent fires across the Sierra Nevada region.
Black-backed Woodpecker populations in California, Oregon, and
the Black Hills of South Dakota are also currently under review for
federal listing as threatened or endangered. Our objective is to eval-
uate the use of ALS data:

1. tomap individual conifer snag characteristics (type and size) across a
recently burned forest, and.

2. to identify patches of potential habitat for awildlife species known to
be dependent on those characteristics.
2. Methodology

2.1. Study site

The study site comprises the footprint of the 2013 Rim Fire, which
burned ~ 104,000 ha across portions of Yosemite National Park,
Stanislaus National Forest, and adjacent private lands in the Sierra
Nevada Mountains of California (Fig. 2). The area is topographically
complex, with elevations ranging from 60 to 2400 m. The fire burned
through a mosaic of vegetation types, including low-elevation
(1000–1500 m) grasslands, chaparral, and foothill-oak woodland habi-
tat, mainly blue oak (Quercus douglasii Hook. & Arn) and interior live
oak (Quercus wislizeni A. DC. (Fagaceae)); and in the lower montane
zone through conifer forests dominated by ponderosa pine (Pinus
ponderosa Lawson and C. Lawson). Mixed conifer forests dominate the
mid elevation (1500–2100 m), including Douglas fir (Pseudotsuga
menziesii (Mirb.) Franco), incense cedar (Calocedrus decurrens (Torr.)
Florin), ponderosa pine (Pinus ponderosa Lawson and C. Lawson),
sugar pine (Pinus lambertiana Douglas) and Sierra white fir (Abies
concolor (Gord. & Glend.) Lindl. ex Hildebr. var.lowiana (Gord. &
Glend.) Lemmon), Jeffrey pine (Pinus jeffreyi Balf) and California black
oak (Quercus kelloggii Newberry). White fir, red fir (Abies magnifica A.
Murr.), western whitebark pine (Pinus albicaulis), and limber pine
(Pinus flexilis) occur in higher elevation (≥2100 m) portions of the
affected area.



Fig. 1. Workflow diagram for habitat mapping described in Section 2.
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2.2. Black-backed woodpecker habitat assessment

We identified and classified Black-backed Woodpecker habitat
based on information provided by Tingley et al. (2014), who used
radio-telemetry to delineate Black-backed Woodpecker habitat home
ranges in three other recently burned forest areas in California, and
then described habitat attributes across those home ranges. Tingley
et al. (2014) found that the primary driver of home-range size, and, by
extension, density of Black-backed Woodpecker pairs across the
landscape, was average basal area of conifer snags. Among individual
woodpeckers whose home ranges were primarily or entirely within
burned areas, the lowest observed value for average snag basal area
across the home range was 17.4 m2/ha, and the mean value was 25.5
m2/ha. We consider these thresholds the best available criteria for
indicating potential and optimal Black-backed Woodpecker habitat,
respectively, within our study area.

2.3. Field plot data

We stratified plot locations by forest structure, status (dead/live),
and type (hardwood/conifer) within the Rim Fire and an additional
2 km unburned buffer zone where ALS data were available. To stratify,
we used a Landsat-based pre-fire vegetation map (CALVEG www.fs.
fed.us) and a burn severity map provided by the U.S. Forest Service
(Fig. 2). We assessed 147 10-m radius field plots in October 2014; 80
plots were within the footprint of the Rim Fire and 65 plots were within
the 2 kmbuffer (Fig. 2). For every treewith a stemdiameter ≥ 10 cm,we
recorded status, species, location, and stem diameter and height. Field
plot center positions were measured using differential GPS and correc-
tionswere applied using the closest fixed antenna for position accuracy,
which varied from 0.10 cm to 0.5 m. Each tree was located by its
distance and bearing to center of the plot. For each plot, we calculated
basal area, (BA, m2/ha), number of trees per plot (N), and basal area-
weighted mean tree diameter, (Dbw,cm). BA (m2/ha) was estimated as
the cross-sectional area of an individual tree at breast height (1.3 m
above the ground) and Dbw as ∑j=1

N (BAj ⋅DBHj)/∑ (BAj). The basal
area of plots ranged from 2.8 to 162 m2/ha with a mean of 47.7 m2/ha.
The minimum and maximum number of trees per plot was 1 and 81
respectively, with a mean of 14. Overall, we measured 2067 trees,
out of which 917 were alive with DBH values ranging from 10 to
155.8 cm, and 1149 were dead with DBH ranging from 10 to
163.2 cm. In addition, the mean DBH and standard deviation for
measured conifer and hardwood snags were 29 ± 17 and 28.3 ± 19.1
respectively, with small trees outnumbering larger ones. Within
conifers snags, there were 657 snags with DBH between 10 and
30 cm, 240 snags with DBH between 30 and 60 cm and 88 snags with
DBH larger than 60 cm.

2.4. Overview

The data analysis workflow consisted of several steps, presented in
Fig. 1. First, we isolated individual trees using theWatershed Segmenta-
tion algorithm initialized with local maxima of the canopy height
surface (Section 2.6). For each detected tree, we then derived a group
of ALS metrics used in the subsequent steps (Section 2.7). Then, trees
were classified into snags/live categories using a Gaussian processes-
based algorithm and the derived metrics (Section 2.8.2). Next, we
applied the same Gaussian process classifier to separate conifer from
hardwood snags as discussed in Section 2.8.2. In the last step, we esti-
mated the stem diameter and basal area of the detected conifer snags,
using a Gaussian process-regression model (Section 2.8.1). Conifer
snag basal area estimation combined with thresholds obtained from a
telemetry study of Black-backed Woodpeckers in burned forest
(Tingley et al., 2014) enabled the habitat mapping as described in
Section 2.2.
2.5. ALS data acquisition and preprocessing

ALS data were collected in November 2013 by the National Center
for Airborne LaserMapping (NCALM) using an Optech Gemini Airborne
Laser Terrain Mapper (ALTM) instrument that recorded up to four
returns per pulse. The collected data covered the fire burn area plus a
2-km buffer, with a scan angle of ± 14 and a nominal 50% overlap
between flight lines, yielding an average pulse density of 19 per m2.
We normalized heights with the 1-m resolution digital elevation
model (DEM) developed by NCALM. In addition to the height informa-
tion, the intensity was also recorded. Intensity is the ratio of power
returned to power emitted (Kaasalainen, Lindroos, & Hyyppa, 2007).
The instrument operates in the near infrared region at a wavelength of
1064 nm, and therefore the return intensity provides information
about object properties related to the reflectivity at this wavelength.
However, it is also function of the illuminated area of the object, scatter-
ing from the target, incident angle, proportion of the pulse remaining
after previous returns, but primarily the sensor-target distance, or
range (Brandtberg, 2007; Höfle, Hollaus, Lehner, Pfeifer, & Wagner,
2008; Korpela, Ørka, Hyyppä, et al., 2010). Therefore, intensity necessi-
tates a range normalization that provides the intensity values that
would have been recorded if all the points were at the same range, i.e.
eliminates path length variations (Holmgren & Persson, 2004). We
used the normalization method, detailed in García, Riaño, Chuvieco,
and Danson (2010), based on the following equation: In ¼ I � R2 � Rs

�2,

http://www.fs.fed.us
http://www.fs.fed.us


Table 1
ALS metrics used in the classifications and regression.

Metric name Metrics description

max h Maximum height
min h Minimum height
mean h Mean height
med h Median height
mode h Modal height
std h Standard deviation of heights
var h Variance of heights
cv h Coe_cient of variation of heights
skew h Skewness of heights
kurt h Kurtosis of heights
fC Fractional cover
Vol Volume
max i Maximum intensity
min i Minimum intensity
mean i Mean intensity
med i Median intensity
mode i Modal intensity
std i Standard deviation of intensities
var i Variance of intensities
cv i Coe_cient of variation of intensities
skew i Skewness of intensities
kurt i Kurtosis of intensities
area Area
cum i Accumulated intensity
cumCorr i Corrected accumulated intensity
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where In is the normalized intensity, I is the original intensity, R is the
range and Rs is a user-defined standard range, in our case 1000 m.

2.6. Tree detection

As shown in Fig. 1, the tree detection consists of two main steps.
First, the ALS points are converted into a smoothed canopy height
model (CHM) with pixel size 0.5 m, which is a sufficiently high resolu-
tion to represent the canopy variability. Second, the CHM surface is
segmented into regions representing individual trees. To generate a
Canopy Height Model (CHM), we used normalized ALS heights from
all returns and found the maximum height within a radius of the pixel
size multiplied by the square root of two. This radius was applied
instead of the pixel size to reduce the size of gaps in the initial CHM.
We further applied a one-iteration anisotropic diffusion filter (Perona
&Malik, 1990) to smooth the CHMwhile preserving the edges, a critical
step to avoid merging canopy crowns in the filtering process. One itera-
tion was chosen to retain the height variability in the CHM while
smoothing the crown. To identify individual trees in the second step,
we applied a localmaximadetection to the smoothed CHMby searching
in eight-connected neighborhood pixels with higher values than their
external boundary neighbors. These are considered the tops of potential
trees. Then, we applied the Watershed Segmentation algorithm
(Beucher & Lantuéjoul, 1979) upon the inverted smoothed CHM using
local maxima previously detected as initial seeds. The output of the seg-
mentation is a raster with a unique tree label. At this point, segments
with maximum heights less than four meters were eliminated, which
were considered as maxima of understory or trees with stem diameters
smaller than 10 cm, for whichwewere not interested. This relationwas
estimated from Sierra Nevada site specific height-DBH allometric equa-
tions (Keyser & Dixon, 2008). Given the low accuracy of the positioning,
we used field-corrected references to verify the algorithmperformance.
The adjustment was applied when the ALS-detected tree and the field
location were within a distance of 3 m and differences in height were
less than 1 m. To evaluate tree detection, we segregated the test trees
into three stem diameter classes given the Black-backed Woodpecker
preference for medium to large snags (Dudley, Saab, & Hollenbeck,
2012; Rota, Millspaugh, Rumble, Lehman, & Kesler, 2014) for foraging,
and the lower contribution of small trees to estimated basal area.
Following the California Wildlife Habitat Relationships (www.dfg.ca.
gov/biogeodata/cwhr/), we defined: small for DBH between 10 and
30 cm, medium for those between 30 and 60 cm and large for DBH
larger than 60 cm.

2.7. ALS metrics

For each tree segmented, ALS points higher than two meters were
extracted, considering that lower points represent understory, and seg-
ments with less than ten points were eliminated. Twenty-five metrics
were calculated using normalized heights and intensities (Table 1) for
each tree, categorized by height, intensity, crown shape, and porosity.
In addition, we estimated area and volume of each tree to describe its
crown shape. We calculated the crown area as the area of the vertical
projection of the crown, approximated using the convex hull of the
returns located within each segment, and the volume as the product
of the area by the vegetation layer height (i.e. tallest height within the
segment minus the two meter canopy threshold). Furthermore, we
quantified the porosity of the crown through the fractional cover, as
the proportion of canopy hits within the vegetation layer in relation to
all hits within the segment (Riaño, Valladares, Condés, & Chuvieco,
2004).We calculatedminimum,maximum,mean, median, mode, stan-
dard deviation, variance, coefficient of variation, skewness, and kurtosis
for height and intensity values of returns above two meters, to account
for the canopy structure, based on the distribution, dispersion, and
shape of the returns. Finally, to account for the variability of the point
density within the study area, we calculated an accumulated intensity
value normalized by density within the segment (García et al., 2010)
as follows:

cumCorr ¼ ∑
n

i¼1
In �

�dflight
dtree

where ∑i=1
n In is the accumulated normalized intensities, �dflight is the

mean point density for the whole dataset and dtree is the point density
of the tree, estimated as the number of returns by the area of the
projected crown.

2.8. Tree classification and DBH estimation using gaussian processes and
ALS-derived metrics

A Gaussian process (GP) is defined as an infinite collection of
random variables, any finite subset of which has a joint Gaussian distri-
bution (Rasmussen &Williams, 2006). As mentioned in Section 2.4, we
applied a GP approach to solve two two-class classification problems,
dead/live and conifer/hardwood, using the 25 ALS-derived metrics
described in Section 2.7 and to estimate DBH of dead conifer trees
from two ALSmetrics: height and crown area. To evaluate performance
of our tree classification and DBH estimation methods we used a
standard Leave-p-Out (LPO) cross-validation technique. We generated
100 random partitions of the data into training (70%) and test (30%)
subsets and calculated the respective algorithm performance statistics
for each partition. First, we discuss the DBH estimation by the Gaussian
process regression that we find conceptually simpler than the GP-based
classification approach discussed in Section 2.8.2.

2.8.1. DBH estimation
In a generic form, the regressionmodel for estimating tree DBH from

a vector of ALS-derived metrics, e.g. height and crown area, can be
written as

d ¼ f xð Þ þ ε;

where d is the DBH value for a tree with the ALS metrics in vector x,
function f is an unknown underlying observation process model; and ε
represents noise and/or unmodeled factors.

http://www.dfg.ca.gov/biogeodata/cwhr/
http://www.dfg.ca.gov/biogeodata/cwhr/


235Á. Casas et al. / Remote Sensing of Environment 175 (2016) 231–241
In the GP-based formulation of the regression problem, the DBH of
an individual tree is considered a normally distributed random variable,
and not a single unknown deterministic quantity, as e.g. in a classic
regression analysis. We further assume that for any tree group, the
joint probability distribution of their DBH is a multivariate normal dis-
tribution. Thus collectively, the actual DBH for all trees in the study
site can be viewed as a finite sample from a Gaussian stochastic process
f, withmean functionm(x) and a covariance function K(x,x'), commonly
called a kernel.

If functions m and K were known, then for any test tree with input
ALS metrics in vector x* the true parameters of the normal distribution
for the DBH d* would also be known and could be used to predict
the most likely DBH value and derive the prediction error estimates. In
reality however, m and K are never known, and therefore need to be
estimated based on the following three types of information:

1. available training samples forwhich both the feature vector x and the
output DBH value d are known;

2. assumptions about a parametric form of the covariance function K,
which controls for the GP model complexity; and

3. assumptions about the noise term ε.

Our training samples included ofNtr=396 conifer snags located and
measured during the field campaign, and described in Section 2.3. Their
DBH values range from 10 to 160 cm, with mean 45.2 cm and the std
24.6 cm. Furthermore, we chose the covariance function required by
item 2) to be a squared exponential kernel K(x,x'):

K x; x0ð Þ ¼ σ2 exp �1
2
∑
P

p¼1
wp xip � x0 ip

� �2" #
;

with (P+1) free parameters:σ ,w1 ,… ,wP. Parameterσ is the unknown
standard deviation of a noise-free DBH signal that properly scales the
covariances; σn is the standard deviation of the noise; and w1, ..., wP

are non-negative weights defining the similarity measure in the P-
dimensional metric space. When the input ALS metrics are similarly
scaled, their weights also provide a relative measure of relevance for
modeling the output DBH. Our original ALS-derived metrics, however,
had very different scales, and therefore were normalized into the
range between 0 and 1. Finally, the noise term was assumed to take
the simplest form. Specifically, for each tree and for each feature the
noise was assumed to be independent and identically distributed
according to a normal distribution N (0, σn), where σn is the noise
standard deviation, which is another free parameter to be estimated.

Our formulation of theGPmodel also implies that the differences be-
tween the observed values of DBH and the predicted values also follow
the same GP model, albeit with the constant zero mean (Rasmussen &
Williams, 2006). In other words, the mean value of the DBH for a new
tree can be derived from the training tree DBH values, as soon as kernel
K is found. Thus, our Gaussian process regressionmodel is controlled by
a vector of free hyperparameters θ={σ,σn,w1,… ,wP}.

With all necessary pieces of information in place, θ and d* can be
found using the maximum-likelihood (ML) principle. Given the
assumptions of our model, the log likelihood maximized with respect
to θ is a Gaussian likelihood

logp djX; θð Þ ¼ �1
2
dTK�1

d d� 1
2
log

����Kdj �
Ntr
2

log2π;

where Kd=K+σnI
2 , and K is thematrix of training tree DBH covariances.

The first term increases with a better fit to the available training tree
data, whereas the second term penalizes our regression model for
complexity. In this way, the ML estimation for the GP model also acts
as a covariance model selection procedure aimed at minimizing the
risk of overfitting the model. The Gaussian likelihood can have multiple
local maxima, and therefore the ML estimation requires setting initial
values for the hyperparameters. In our experiment, the following initial
values were used: σ =1; σn=0.1, and wp=1.

Using the obtained ML estimate of θ, the DBH values were found
(K⁎ [K+σn

2I]-1 d), which is themean value of the DBHposterior distribu-
tion (see Gibbs (1998) for further details).

2.8.2. Tree classification
When a Gaussian process approach is applied to a two-class classifi-

cation problem, the target random variable is a discrete class label y=
{0, 1}. Given a vector of ALS metrics x, the class label assignment by
GP classification requires modeling the tree posterior probability for
one of the classes, which we denote by p(x).

For each classification problem, we selected ALS metrics that maxi-
mize inter-class and minimize within-class differences in the training
data. For the snag/alive classification problem, these metrics included
12 ALS metrics: five structural metrics (minimum height, height coeffi-
cient of variation, fractional cover, volume, and area) and seven intensi-
ty metrics (maximum, minimum, median, variance, coefficient of
variation, and accumulated corrected intensity). For hardwood/conifer
classification, we used nine metrics, including seven structural metrics
(maximum, median, standard deviation, and skewness of heights;
fractional cover, volume, area) and two intensity metrics (minimum
intensity and accumulated intensity normalized by area). As in the
case of regression (Section 2.8.1), all ALS-metrics were normalized to
fit the interval between 0 and 1. Our training sample for snag/live
classification included 497 trees measured in the field (Section 2.3),
and for conifer vs. hardwood snag problem 343 training trees were
used.

Conceptually, the posterior probability estimation proceeds in two
steps (Rasmussen & Williams, 2006). First, a GP regression approach
with the squared exponential kernel for the covariance function (as in
Section 2.8.1) is used tomap the ALS feature vector x into an intermedi-
ate one-dimensional latent random variable z= f(x). This latent
variable, in effect, models relative likelihood of class membership as a
stochastic function f of the feature vector x. The second step is to apply
a deterministic sigmoid function transforming z from its native domain
into the range between 0 and 1, so that it can be viewed as the class
probability. In this work we used the Gaussian cumulative distribution
function, Φ(z), also called the error function.

The parameters of the GP model for classification include σ, and
w1 ,… ,wP, where P is the number of ALS metrics. In each classification
problem, the maximum-likelihood estimation of the parameters was
performed via the Expectation Propagation (EP) algorithm (Minka,
2001; Rasmussen&Williams, 2006),withσ and all weightwp initialized
to 1.

2.9. Black-backed woodpecker habitat mapping

Based on conifer snag basal area across Black-backed Woodpecker
home ranges studied by Tingley et al. (2014), we mapped contiguous
areas with potential (i.e., snag basal area N the lowest mean basal area
observed across any Black-backedWoodpecker home range) or optimal
(i.e., snag basal area Nthe 50th percentile of average basal area values
observed across any Black-backed Woodpecker home range) Black-
backed Woodpecker habitat. To estimate the accuracy of the resulting
overall basal area mapping, we compared the measured and mapped
conifer snag basal area over the field plots. Finally, we estimated the
total potential and optimal habitat area and assessed its degree of
fragmentation.

3. Results

3.1. Tree detection

Our results show that the percentage of detected trees varieswith its
stem diameter (Table 2). The algorithm detected 99% of trees with large



Table 2
Individual tree detection accuracies for three DBH classes: small (10–30 cm), medium
(30–60 cm), and large (greater than 60 cm).

All Small Medium Large

Commission.E.,% 12.3 10.4 8 17
Omission.E,% 45.7 61.2 25 1
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stem diameter with only commission errors and 75% of trees with
medium stem diameters (Table 2). Note that 25% of medium size trees
remained undetected, because they were suppressed by larger trees.
The algorithm detected 87% of trees with stem diameter larger than
30 cm. The inability to detect suppressed trees is a well-known draw-
back of CHM-based tree delineation algorithms. Although the small
trees objectively represent the greatest challenge, we have been able
to map nearly 40% of them.

3.2. Classification and stem diameter estimation results

3.2.1. Snag/live classification
The results presented in Table 3 demonstrate high accuracy of snag/

live classification,with the overall correct classification rate of 91.8% and
a kappa coefficient of 0.84. Both, commission and omission errors are
under 10% ± 3%, based on the LPO cross-validation (Table 3).

The model relies on the coefficient of variance (CV) as the only
metric related with heights. Intensity data is used in the model through
themaximum, variance, coefficient of variation,with CV as themost rel-
evant one for the model. Finally, the model uses shape related metrics,
mostly area but also volume to discriminate between classes (Fig. 3).

Fig. 4 shows how the snags distribution aligns with the burned area
in Fig. 2, where moderate and high severity sites correspond to partial
and complete tree mortality, respectively. Fig. 4 also shows how live
trees abound at higher elevations.

3.2.2. Conifer/hardwood classification
Similar to snag/live classification, the Gaussian process technique

effectively discriminates between snag hardwood and conifer trees.
Table 4 shows, based on the LPO cross-validation, that the correct
classification rates for both classes are very similar and approach 85%,
with std. of 5%. The kappa coefficient for the snag type classification is
0.64. Both, commission and omission errors are under 16% ± 5%.

Both maximum and median heights have a relevant role in the
classification since conifer snags tend to stand taller. The minimum
value of intensity clearly has an impact on the classifier. In terms ofmet-
rics related to height, the standard deviation, skewness, and fractional
cover are also relevant for the model. The analysis shows that conifer
snags can reach larger values of standard deviation and fractional
cover than dead hardwoods. Finally, themodel also uses the areametric
to separate between classes (Fig. 3).

Snag maps by forest type (Fig. 4) show that hardwoods are some-
what distributed across the study site, whereas conifers exhibit more
apparent spatial clustering, mainly south-east and central areas of
Stanislaus National Forest and much of the burned portion of Yosemite
National Park.
Table 3
Confusion matrix for the snag/live classification. Values shown are the mean ± std. cross-
validated results with 100 replications.

References Total

Snag Live

GP Snag 96.9 ± 6.58 7.3 ± 3.0 104.2
Live 10.1 ± 3.1 98.7 ± 6.7 108.8
Total 107 106 213
Producer's accuracy,% 90.51 ± 2.8 93.1 ± 2.8
User's accuracy,% 93.04 ± 2.7 90.72 ± 2.7
3.2.3. DBH estimation results
Our results show that the Gaussian process regression provides

an effective method to estimate stem DBH from maximum height
and area, with the determination coefficient R2 = 0.81 and rmse
=10.6 cm. The model performs similarly for medium and large stem
trees, as seen from the scatter plot of true versus GPR-predicted stem
diameter for 119 snag conifer trees in Fig. 5. Table 5 provides more
information about estimation accuracy per tree size class. For small
trees, the absolute errors are smaller, however the relative rms error
(Table 5) is larger than for the other two size classes. The use of relative
error is more appropriate to understand the performance of the model
per tree size class, particularly for medium and large trees, since it is
not affected by the size of the stem itself. Medium and large trees are
more important for Black-backed Woodpecker foraging habitat than
small trees, and therefore, better accuracy of our model for medium
and large trees is an advantage. Stem diameters for small trees tend to
get underestimated with the GP modeling, while no significant bias is
observed for medium trees (Fig. 5).

The GP-based estimation results provide a significant improvement
over the traditional DBH modeling approach based on allometric
equations (Keyser & Dixon, 2008). The allometric model has a lower
R2 value (0.73) and larger scatter, as shown in Fig. 5. Furthermore, the
errors of the GP estimation are reduced by almost a half, with respect
to the allometric approach (rmse =16.5 cm and relative error =
43.5%), thus providing a more accurate input into deriving basal area
calculation. Conifer snags basal area-weighted mean tree diameter
map (Fig. 4) showed how large DBH trees dominate at the highest
elevations within Yosemite National Park and the north-west area of
the Rim Fire within Stanislaus National Forest.

3.3. Black-backed woodpecker habitat mapping results

Optimal and potential habitat for Black-backed Woodpecker com-
prise 53.7 km2 and 58.4 km2, respectively, representing 5.1 and 5.6% of
the overall footprint of the Rim Fire. In many instances, optimal habitat
areas are adjacent to or surrounded by areas mapped as potential
habitat, resulting in relatively large patches of apparent habitat. Some
of the larger habitat patches are localized near the center of the burned
area on Stanislaus National Forest, and to the east, near the border with
Yosemite National Park. These large fragments comprise approximately
1 km2 each, whereas most of the other optimal habitat areas, particular
in Yosemite National Park, are more highly fragmented. Comparing the
measured and mapped conifer snag basal area over the field plots
showed that our method mapped 81.3% ± 18.7% of the total basal
area (Fig. 6). Our estimates of the extent of potential and optimal
Black-backed Woodpecker habitat in the Rim Fire should therefore be
considered lower bounds.

4. Discussion

Large stem diameter trees are detected at markedly higher rates
than those with small diameter stems, likely because small trees are
commonly suppressed by larger overstory trees and thus are mostly
undetectable by LiDAR. This result is in agreementwith previous studies
(Chen, Baldocchi, Gong, & Kelly, 2006; Duncanson, Cook, Hurtt, &
Dubayah, 2014; Reitberger, Schnorr, Krzystek, & Stilla, 2009; Solberg
et al., 2006). Although under-detection of small trees leads to underes-
timation of basal area, we believe the impact of this error on Black-
backed Woodpecker habitat mapping evaluation is minimal, due
to the species preference for medium and large snags for foraging.
Additionally, the contribution of large and medium stems to the basal
area estimation in our field plots is 36% and 48% respectively, what rein-
forces the small impact of undetected small trees in ourwork.Neverthe-
less, if our method is also to be applied for wildlife species that utilize
smaller diameter snags, it should include additional steps to refine the
Watershed Segmentation algorithm output. Examples of successful



Fig. 2. Location and Landsat-based burn severity (% change in canopy cover) of the 2013 Rim Fire on Stanislaus National Forest and Yosemite National Park (Miller & Thode, 2007).
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such post-segmentation refinement steps can be found in Reitberger
et al. (2009) and Duncanson et al. (2014).

A common factor determining the accuracy of all tree detection
approaches is the ALS data point density. Our method used a high-
density ALS dataset, averaging 19 points per m2. While a lower density
data would negatively impact detection rates for both live and snag
trees, the impact on snags would be more dramatic, because small
objects like snags may no longer have a minimal number of returns to
form a separate segment. Indeed, even with our high-density data, our
snags often provide just a few above-ground returns, with fewer hits
when defoliated (e.g. b 10). The mean number of canopy ALS points
per segment was 454 ± 552. We expect that lower density might also
have a negative impact on the classifications, and DBH estimation.

The main advantages of using Gaussian processes include the
probabilistic, interpretable outputs and uncertainty information, and a
built-in mechanism for automatic selection of relevant metrics based
on the covariance kernel weights. Not surprisingly, our results suggest
that the chosen ALS metrics related to return intensity are highly infor-
mative for snag identification (see Fig. 3, top graph). These metrics
include maximum (Max-I), coefficient of variation (CV-I), and variance
(Var-I). Indeed, metrics CV-I and Var-I are meaningful as they tend to
have lower values for live trees than for snags; whereas maximum
intensity is expected to be lower for snags. This high contribution of
intensity-related metrics is in agreement with other studies (Kim,
Yang, et al., 2009; Korpela, Ørka, Maltamo, et al., 2010) that relate
lower intensity with snags, for which returns are based on reflections
from burned stem and branches. However, it contradicts the work of
Yao et al. (2012), who found intensity metrics only moderately impor-
tant to detect 71% of snags under leaf-off conditions. The importance
of the canopy penetration metric in the model of Yao et al. (2012) is
Table 4
Confusion matrix for the conifers/hardwood classification. Values shown are the mean ±
std. cross-validated results with 100 replications.

Reference Total

Conifer Hardwoods

GP Conifer 62 ± 5.6 11.5 ± 4 73.5
Hardwoods 11.4 ± 3.7 62.2 ± 5.1 73.6
Total 73.4 73.7 147
Producer's accuracy,% 84.5 ± 5.0 84.7 ± 5.1
User's accuracy,% 84.5 ± 5.0 84.5 ± 4.5
consistent with the relevance of fractional cover in our results. It should
be noted that fractional cover is not always enough to differentiate
snags from live trees. Similar fractional cover values can correspond to
snag and live conifer because conifer snags often retain dead needles.
Fig. 3. Relevance of the metrics in the GP snag/live (top) conifer/hardwood (bottom)
model obtained from the non-negative weights (wP) of the kernel.



Fig. 4.Number of live trees per pixel (A), number of hardwood snags (B), number of conifer snags (C), and conifer snag basal area-weightedmean tree diameter,m (D). Pixel resolution=50m.
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However, in cases in which the snags have completely lost their foliage
they effectively relate to low fractional cover values. Consistentwith our
results, the variability of heights have been found useful to identify
snags using area-based approaches (Bater et al., 2009; Martinuzzi
et al., 2009). For example, Martinuzzi et al. (2009) presents detection
rates of 86% to 88% for different diameter classes using height and
topography-related metrics with a plot-based approach, but only
when additional forest successional data are used. Our snag detection
rate is also higher than that ofWing et al. (2015),whopresent an overall
detection of 56% for stem diameters larger than 25 cm.

Separation of conifer and hardwood snags, relied primarily on
height-related metrics, mainly the median but also the maximum and
standard deviation. The importance of both maxima and median
heights are explained from the fact that conifer snags tend to stand
taller. The area occupied by the snag and its fractional cover are also rel-
evant for themodel (Fig. 3). Thedata show that conifer snags on average
have larger values of standard deviation of height and fractional cover
than dead hardwoods, with values in common for both classes. This
might be due to the fact that conifer snags might retain brown needles
and therefore have large fractional cover and standard deviation,
whereas dead hardwood have lost their foliage and have lower values
in both metrics.

The arrangement of the canopy, depending on forest type, has been
successfully related to intensity (Kim, McGaughey, et al., 2009; Ørka,
Næsset, & Bollandsås, 2010). Some studies found the average of intensi-
ties to be less for conifers than for hardwoods (García et al., 2010;
Vauhkonen et al., 2014). In our study both forest types are dead and
unsurprisingly intensity plays a minor role in the classifier. However,
we note that lower values of the minimum intensity characterize coni-
fer snags which is in agreement with Vauhkonen et al. (2014) and
García et al. (2010). Our classifier has an overall accuracy of 84.8%.
This result is comparable with studies that classify live conifers from
leaf-off hardwoods such as Kim,McGaughey, et al. (2009)who achieved
a classification accuracy of 83.4%. It must be noted that some snags in
our samples were pole-shaped (3.7% of our measured trees), which
are difficult or impossible to differentiate.

Our estimation of stem diameters for conifer snags using Gaussian
process regression proved reliable and comparable with other studies
in terms of the correlation coefficient (Popescu, 2007; Yao et al.,
2012); however, the rmse is larger than expected (Table 5). Popescu
(2007) for example, estimated stem diameter with a rmse of 4.9 cm
while Muss, Mladenoff, and Townsend (2011) even though estimating
DBH with lower coefficient of correlation that our results, had lower
rmse. It must be noted that in those studies trees are alive, whereas in
our case broken or partially consumed snags introduced noise into the
model. Furthermore, our field data had similar stem diameters for
very different tree heights. In general, the method overestimates very
large stem diameters (N90 cm) while large and medium diameter
trees are estimated with no significant bias (Fig. 5 and Table 5). Never-
theless, our Gaussian process-based method provides a significant
improvement over the traditional use of site-specific conifer allometric
equations (Fig. 5). The presented method for mapping conifer snag
basal area represents a chain of steps, each of which factoring in the
accuracy of the final map and any derived metrics of habitat mapping,



Fig. 5. Scatterplot of observed and predicted conifer snag DBH using Gaussian process
regression (top) and site-specific allometric equations for conifers (bottom). Solid lines
show the least-squares linear relationship between the observed and predicted DBH.
The 1:1 relationship is represented by a dashed line.
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such as the ones discussed in Section 3.3. Furthermore, the combined
effect of tree delineation error, confusion in snag/live and conifer/
hardwood classifications, and the DBH modeling residuals on the final
product, is also expected to vary with the forest density and gap struc-
ture, species composition, and other factors.

Although ALS accommodates the extraction of relevant 3D structural
metrics at different level of details, its potential in wildlife studies is not
being fully exploited if detailed habitat attributes are not derived at
grain sizes known to be relevant to conservation and management
(Müller & Brandl, 2009). One of the main advantages of the presented
methodology is the use of a single-tree approach that enabled the ag-
gregation of estimated basal area at the scale required by the habitat
model without loss of information. This would not be the case for
Table 5
DBH estimation performance statistics, including mean error (ME), root mean-squared
error (RMSE), mean absolute error (MEA) and relative error (RE) normalized by mean
DHB. Error values shown are the mean ± std. over 100 replications.

GP regression ME (cm) RMSE (cm) MAE (cm) RE (%)

Small 3.3± 1.2 7.2± 1.4 5.2 ± 0.8 20.3 ± 2.1
Medium 1.2± 1.4 8.7± 1 6.8 ± 0.8 16 ± 1.9
Large 3 −5.4± 2.6 14.6± 2.1 11.2 ± 1.5 18.6 ± 3.6
All 0.01± 1.2 10.6± 1 7.6 ± 0.6 18.1 ± 1.3

R2=0.81
area-based estimations that, if rescaled, will introduce an unknown im-
pact into habitat modeling results (Garabedian et al., 2014). In addition,
home ranges are not homogeneous (Tingley et al., 2014) and a single
tree approach provides the flexibility of aggregated results in different
spatially discriminant shapes.

Credible assessments of habitat for indicator species or species of
management concern can help land managers make difficult decisions
about which burned stands to harvest or which to retain for wildlife
habitat. This model-based approach is particularly useful for Black-
backed Woodpecker, which may not fully colonize new burned areas
until many months (or even multiple years) after the fire. On-the-
ground occupancy surveys conducted on this timeline may be too late
to inform decisions about post-fire forest management. In contrast,
when suitable ALS data is available, predicted habitat can be mapped
rapidly, as required by land managers who need to act while fire-
killed trees are still merchantable.

Themethodology presented provides an effective way to detect and
identify snags at the single-tree level and characterize their type and
size with uncertainty estimations using only high-density ALS data.
Furthermore, it provides wall-to-wall coverage of predicted habitat
for the Black-backed Woodpecker across the full extent of a recent
megafire. Black-backedWoodpeckers are strongly associated with hab-
itat conditions created by mid- and high-severity fires. Our habitat map
provides a tool that land managers can use for identifying forest stands
that, if left unharvested, are likely to be of greatest value to Black-backed
Woodpeckers. We caution, however, that managing habitat for one
wildlife species that is strongly associated with recently burned forest
(or any other habitat) does not necessarily ensure that the needs of all
such species will be met (Landres, Verner, & Thomas, 1988).

The maps generated can be used as a base layer to improve habitat
modeling at broad scales (Tingley et al., 2014) as well as an exploratory
tool to study structural patterns in combination with occupancy or
biodiversity data (Vierling, Vierling, Gould, Martinuzzi, & Clawges,
2008). Overall, the methodology presented can be used in a variety
of applications related to biodiversity, environmental health and vege-
tation dynamics studies, such as quantifying tree mortality attributed
to increases in temperature and drought or forests affected by insect
infestation. In postfire scenarios, a snag map can be used to improve
burn severity estimation (Gajardo, García, & Riaño, 2014), precise
location of green islands for re-seeding, and as a baseline for future
assessment of vegetation regeneration after fire (Abella & Fornwalt,
2014). Finally, the classification of snags by its forest type and its diam-
eter size estimation can be applied in dead biomass retrieval studies
(Kim, Yang, et al., 2009). Dead biomass estimation is compelling in a cli-
mate change context, given the critical role burned trees play in carbon
sequestration, retaining carbon for decades, and releasing it gradually
by decomposition (Siccama et al., 2007).
5. Conclusion

Our study shows the utility of high-density discrete ALS data for
mapping the mortality status, type, and stem diameter of trees in a
recently burned forest. These maps, in conjunction with habitat models
based on snag abundance and characteristics, allow identification of
habitat for Black-backed Woodpecker and other wildlife species. This
work contributed to developing a fast and efficient operationalmethod-
ology to characterize the extent of burned forest at the tree level, which
can greatly aid wildlife habitat assessment, forest management, and
conservation planning after megafires. Timely, spatially distributed
characterization of burned forest will become increasingly important
in light of projected increase in megafire frequency. A potential avenue
for future development would involve the identification of hotspots for
multiple snag-dependent taxa within the same burned landscape,
allowing an integrated, multi-species approach to forest management
and species conservation.



Fig. 6. Habitat map for the Black-backed Woodpecker across the Rim Fire, based on pre-harvest conditions and conifer snag basal areas (csBA) thresholds obtained from Tingley et al.
(2014). Pixel resolution = 20 m.
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