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Abstract. The importance of understanding spatial variation in processes driving animal
population dynamics is widely recognized. Yet little attention has been paid to spatial modeling
of vital rates. Here we describe a hierarchical spatial autoregressive model to provide spatially
explicit year-specific estimates of apparent survival (/) and residency (p) probabilities from
capture–recapture data. We apply the model to data collected on a declining bird species, Wood
Thrush (Hylocichla mustelina), as part of a broad-scale bird-banding network, the Monitoring
Avian Productivity and Survivorship (MAPS) program. The Wood Thrush analysis showed
variability in both / and p among years and across space. Spatial heterogeneity in residency
probability was particularly striking, suggesting the importance of understanding the role of
transients in local populations. We found broad-scale spatial patterning in Wood Thrush / and
p that lend insight into population trends and can direct conservation and research. The spatial
model developed here represents a significant advance over approaches to investigating spatial
pattern in vital rates that aggregate data at coarse spatial scales and do not explicitly
incorporate spatial information in the model. Further development and application of
hierarchical capture–recapture models offers the opportunity to more fully investigate
spatiotemporal variation in the processes that drive population changes.
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INTRODUCTION

Capture–recapture models are commonly used to

estimate vital rates of animal populations, particularly

survival (Sandercock 2006). The general capture–recap-

ture model used to study survival is the Cormack-Jolly-

Seber (CJS) model (Lebreton et al. 1992), which

provides estimates of apparent survival probability; i.e.,

the probability that an individual survives and remains

in the sampled population. Estimates of apparent

survival probability deriving from these models can

often be biased low for vagile animal populations, such

as birds, where nonresident individuals (e.g., passage

migrants, dispersing birds, ‘‘floaters’’ [sensu Brown

1969]) may make up a large proportion of the

capture–recapture sample. These nonresidents, collec-

tively referred to as ‘‘transients’’ in the literature, include

all individuals that have zero probability of being alive

and in the population on sampling occasions subsequent

to their initial capture (Pradel et al. 1997). Modifications

of the CJS model have been developed to provide

apparent survival rate estimates that are closer to true

survival rates of residents (Pradel et al. 1997, Nott and

DeSante 2002, Hines et al. 2003). There is also intrinsic

ecological interest in estimating proportions of residents

and transients in local populations; however, little

attention has been given to this subject.

Spatial modeling of capture–recapture data has also

received little attention. Most studies that have consid-

ered ‘‘spatial effects’’ on survival have been within a

metapopulation (i.e., discrete subpopulation) context

(e.g., Hokit and Branch 2003, Ozugal et al. 2006) or

have compared survival rates among broad contiguous

regions (e.g., Saracco et al. 2008). Explicit incorporation

of spatial effects into capture–recapture models would

facilitate identification of scales of spatial pattern in

demographic processes and lend insight into drivers of

population changes. Furthermore, capture–recapture

models are notoriously ‘‘data-hungry’’; spatial models

can improve precision of estimates of demographic

parameters in cases where data from individual study

areas are sparse by leveraging the spatial relatedness in

parameter estimates of adjoining study locations (Ghosh

and Rao 1994).

Here we describe a hierarchical model for producing

spatially explicit year-specific estimates of apparent

survival and residency probabilities from capture–

recapture data. The model adapts the state–space

formulation of the CJS model described by Royle

(2007) and further by Royle and Dorazio (2008). We

apply the model to capture–recapture data for a
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declining bird species, Wood Thrush (Hylocichla muste-

lina), that were collected as part of a broad-scale

constant-effort mist netting program, the Monitoring

Avian Productivity and Survivorship (MAPS) program

(DeSante and Kaschube 2007).

THE MODEL

We adopted a hierarchical formulation of the

‘‘transient’’ CJS model (Pradel et al. 1997) based on i

¼ 1, . . . , N individual encounter histories, j¼ 1, . . . , M

sampling locations, and t¼ 1, . . . , T sampling occasions

(Royle and Dorazio 2008: Chapter 11). Because CJS

models are conditional on first capture, we distinguish

time of first capture for individual i as t ¼ fi. We

developed the model in terms of two latent state

variables, residency state, R(i, j, t), and ‘‘alive’’ state,

z(i, j, t); and two observed variables, ‘‘predetermined’’

residency state, r(i, j, t), and the observed alive (i.e.,

encountered) state, y(i, j, t), which are conditional on

R(i, j, t) and z(i, j, t), respectively.

We let R(i, j, t)¼ 1 for individuals that are resident in

the sampled population and R(i, j, t) ¼ 0 for

nonresidents (i.e., transients). We modeled R(i, j, t) as

a Bernoulli random variable:

Rði; j; tÞ; BernðpijfiÞ

where pijfi is the probability that individual i at location j

and newly captured at time fi is a resident. Although we

typically cannot observe R(i, j, t) directly, we can often

‘‘predetermine’’ some individuals as residents based on

supplementary data. For example, whenever multiple

subsamples are collected within primary sampling

occasions (as in ‘‘robust design’’ studies; Pollock et al.

1990), individuals captured in multiple subsamples

might be considered a priori to be residents (Nott and

DeSante 2002, Hines et al. 2003). We can denote these

predetermined residents with an indicator variable, r(i, j,

t), such that r(i, j, t)¼ 1 for predetermined residents, and

r(i, j, t) ¼ 0 otherwise. We can express the relationship

between r(i, j, t) and true residency, R(i, j, t), as

rði; j; tÞ jRði; j; tÞ; Bern½Rði; j; tÞqijfi �

where qijfi is the probability of predetermining an

individual to be a resident. This model admits the

assumption that the probability of identifying a nonres-

ident [R(i, j, t)¼0] as a predetermined resident [r(i, j, t)¼
1] is 0. Conversely, the probability of assigning a

resident [R(i, j, t) ¼ 1] to be a predetermined resident

[r(i, j, t)¼ 1] is qijfi . While qijfi is a nuisance parameter, it

is needed to express the relationship between observa-

tions r(i, j, t) and parameters that are directly relevant

(see below), which is done by use of the latent variables

R(i, j, t).

We describe the survival process in terms of an

individual’s ‘‘alive state,’’ z(i, j, t), where z(i, j, t)¼ 1 for

individuals, i, that are alive and available to be

encountered at site j and time t, and z(i, j, t) ¼ 0

otherwise. We define the model for z(i, j, t) as

zði; j; tÞ j zði; j; t � 1Þ; Bern½Rði; j; tÞzði; j; t � 1Þ/ijt�1�:

That is, the alive state of a resident [R(i, j, t) ¼ 1] that

was alive and in the population on the previous

sampling occasion [z(i, j, t � 1) ¼ 1] is a Bernoulli

random variable with success (i.e., survival) probability

/ijt�1. An individual that was not alive and in the

population on the previous sampling occasion [z(i, j, t�
1) ¼ 0] or that is not a resident [R(i, j, t) ¼ 0] has alive

state z(i, j, t)¼ 0 with probability 1. Note that the model

is conditional on time of first capture, fi, such that

z(i, j, fi ) ¼ 1 with probability 1.

The observations, y(i, j, t), describe whether individ-

ual i at location j is encountered on sampling occasion t;

y(i, j, t)¼ 1 if individual i is encountered and y(i, j, t)¼ 0

if it is not. We modeled y(i, j, t) conditional on z(i, j, t),

such that:

yði; j; tÞ j zði; j; tÞ; Bern½zði; j; tÞpijt�

where pijt represents recapture probability. Thus, if

z(i, j, t)¼0 then y(i, j, t)¼0 with probability 1; otherwise

y(i, j, t) is a Bernoulli trial with success probability pijt.

Based on this individual-level formulation of the CJS

model, we used logit-linear models to model the two

population parameters /ijt and pijt. For survival we

assume that survival of individual i captured at location

j during year t only depends on location and year

according to

logitð/ijtÞ ¼ lt þ uj

and, for residency probability,

logitðpijtÞ ¼ at þ vj

where /ijt is survival probability for individual i at

location j between occasion t and t þ 1, and pijt is

residency probability for individual i at location j on

occasion t; lt and at are their respective year-specific

means; and uj and vj are zero-mean random effects

assumed to be spatially autocorrelated.

Spatial dependence in uj and vj could be parameter-

ized a number of ways. An efficient class of spatial

models that has seen recent widespread use in ecology

are conditional autoregressive (CAR) models (e.g., He

and Sun 2000, Lichstein et al. 2002, Thogmartin et al.

2004, Webster et al. 2008). The general CAR model

relates elements of a vector of random effects [e.g., for

/ the spatial effects are u ¼ (u1, . . . , uM)] to nearby

values in the conditional mean. Here we consider the

intrinsic version of the CAR model (Besag et al. 1991)

for uj and vj:

uj ju�j ¼ Norm
1

nj

X
k2Nj

uk;r
2
/=nj

0
@

1
A
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JAMES F. SARACCO ET AL.1886 Ecology, Vol. 91, No. 7
R

ep
or

ts



vj jv�j ¼ Norm
1

nj

X
k2Nj

vk;r
2
p=nj

0
@

1
A

where N j denotes the neighborhood of spatial location j,

which is the collection of identities of neighboring

locations, and nj is the number of neighbors of location

j; i.e., nj ¼ dim(N j). CAR models are ideally suited to

situations in which space is inherently discrete (e.g.,

geopolitical units). However, a continuous geographic

region can also be discretized into contiguous ‘‘strata’’

by overlaying a regular grid. In such cases, neighbor-

hoods are typically defined as ‘‘rook’s’’ (four neighbors

in cardinal directions) or ‘‘queen’s’’ (cardinal directions

plus diagonals) neighborhoods.

Because /ijt and pijt cannot be completely observed,

we had to also define models for the two nuisance

parameters, qijt, the probability of predetermining an

individual to be a resident, and pijt, the encounter

probability. As for /ijt and pijt, we modeled these

parameters using logit-linear links. We did not include
spatial effects, however, in the models for qijt and pijt.

EXAMPLE: WOOD THRUSH

We applied the model to data for Wood Thrush

(Hylocichla mustelina) collected as part of the Monitor-

ing Avian Productivity and Survivorship (MAPS)

program (see Plate 1). Although Wood Thrush is a

common breeding forest bird of eastern and central

North America, it has declined over the past 40 years

and is of high conservation concern (Rich et al. 2004,

Sauer et al. 2007). The MAPS program is a cooperative

network of nearly 500 constant-effort mist-netting

stations operated across North America each summer;

it provides demographic data for .180 landbird species

(DeSante and Kaschube 2007). Similar programs exist

in Europe, where they are central components of

national and international bird-monitoring efforts

(Peach et al. 2004, Robinson et al. 2009).

Details of MAPS data collection are described in

DeSante and Kaschube (2007) and references therein.

Briefly, a mist net array (typically ten 123 2.5 m nets) is

operated at each station (approximately 20 ha) on six to

nine days per year. Although stations drop out and enter

the program each year, many are operated for long time

spans (e.g., 227 stations [nearly 25%] have operated for

�10 yr). Unbanded birds captured during mist-netting

operations are identified to species, age, and (if possible)

sex (Pyle 1997); and are banded with uniquely numbered

metal bands issued by the USGS Bird Banding

Laboratory. Band numbers of recaptures are recorded.

FIG. 1. Locations of 179 Monitoring Avian Productivity
and Survivorship (MAPS) stations operated between 1992 and
2003 included in the analysis of Wood Thrush (Hylocichla
mustelina) capture–recapture data. Breeding range (based on
Ridgely et al. [2007]) is indicated by shaded area; note that
several MAPS stations where the species regularly bred fell
outside of that range and were also included in the analysis.

PLATE 1. Wood Thrush (Hylocichla mustelina) banded as part of broad-scale bird monitoring efforts. Photo credit: J. F.
Saracco.
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We included capture–recapture data from 1992–2003

on 6241 adult Wood Thrush banded at 179 MAPS

stations where the species was considered to be a regular

breeder (Fig. 1). We identified 1282 individuals as

predetermined residents [i.e., r(i, j, t) ¼ 1] based on

multiple captures .6 days apart in the year that they

were banded. We stratified the study region at the scale

of 18 (latitude and longitude) grid cells; i.e., data were

pooled across stations at the scale of 18 blocks for spatial

models of / and p. This scale of resolution represented a

compromise between excessive computation (too many

grid cells) and poor characterization of spatial structure.

Exploratory studies of spatial pattern in count data

suggested that this resolution would be adequate to

detect broad-scale spatial pattern for this species (e.g.,

Jones et al. (2007) report a characteristic scale of

autocorrelation in abundance of approximately 400

km). Spatial random effects were assigned intrinsic

CAR priors (as defined in The Model ). We defined N j as

a queen’s neighborhood, such that each 18 cell had a

maximum of eight neighbors. Building on the general

model described above, we included a ‘‘time-constant’’

covariate for the model for p at the scale of stations that

represented the mean number of times per year that

individual adult Wood Thrushes were captured (Julliard

2004). This parameterization represents the hypothesis

that recapture probability increases as individuals are

captured more frequently at a station within a season.

Alternative parameterizations of p not reported here

(e.g., constant across stations or random grid effects)

yielded similar results.

We used proper uniform prior distributions, U(0,1),

for /, p, q, and p; Gamma(0.1, 0.1) priors for the

conditional precision parameters, s/, and sp (where s ¼
1/r2); and N(0, 0.001) as a prior for b, the slope

parameter of the covariate on p. We obtained posterior

distributions by sampling full conditional distributions

using Markov chain Monte Carlo (MCMC) methods

(Gilks et al. 1996), as implemented in WinBUGS

(Spiegelhalter et al. 2003). Posteriors were based on

20 000 iterations of two chains after discarding the first

10 000 iterations and thinning by two. We provide model

implementation detail, R (R Development Core Team

2007) and WinBUGS code, and data in the Supplement.

Posterior means for all model parameters were

somewhat variable among years (Fig. 2). Annual point

estimates of residency probability, p, ranged from 0.429

to 0.673, while estimates of survival probability, /,
ranged from 0.279 to 0.579. Spatial variation in p was

particularly high compared to spatial variation in /
(Fig. 3). The relatively high spatial heterogeneity in p
was reflected in high estimated standard deviation for

this parameter (posterior mean rp¼ 1.464, 95% credible

interval¼ 0.990, 2.058) compared to estimated standard

deviation for survival probability (posterior mean r/ ¼
0.813, 95% credible interval¼ 0.446, 1.263). Precision of

estimates of / and p was highest in regions with the

highest density of MAPS stations that capture breeding

Wood Thrushes and lowest along the periphery of the

study region where stations were fewer and fewer

neighboring grid cells were available to contribute

information to predictions (Fig. 3). The slope parameter

for the covariate in the model for p was positive,

supporting the hypothesis that p is higher at stations

where individual Wood Thrushes are caught more

frequently within a season (mean b ¼ 2.235, 95%

credible interval ¼ 1.689, 2.818).

Both / and p showed broad-scale spatial pattern (Fig.

3). Survival probability was high along the Mid-Atlantic

coast and in the Midwest and low in the Southeast and

along an axis extending from the southwest to northeast

extents of the breeding range. Residency probability was

also high along the Mid-Atlantic coast, and in the

Southeast and central Midwestern states; it was low

along a southwest-northeast axis (also similar to

survival) and near the western and northern periphery

of the Wood Thrush breeding range. Although grid cells

of high or low / and p coincided in some cases, there

was little evidence of spatial correlation between the two

parameters (mean correlation of the MCMC chains for

FIG. 2. Annual estimates (posterior means 6 95% credible
intervals) of apparent survival probability, residency probabil-
ity, probability of predetermining a resident, and recapture
probability for Wood Thrush (Hylocichla mustelina) capture–
recapture data collected between 1992 and 2003 as part of the
Monitoring Avian Productivity and Survivorship (MAPS)
program.
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time-averaged values of / and p ¼ 0.007; 95% credible

interval ¼�0.214, 0.234).

DISCUSSION

Despite widespread recognition of the importance of

spatial variation in the processes that drive animal

population dynamics (Ozugal et al. 2006, Ciannelli et al.

2007), little attention has been paid to developing spatial

capture–recapture models. A practical motivation for

developing such models is that capture–recapture data

are often sparse at local scales (e.g., at the scale of an

individual MAPS station), preventing fine-scale param-

eter estimation (Royle et al. 2007). This is the

motivation underlying classical ‘‘small-area estimation’’

(Ghosh and Rao 1994). With the spatial model

described and implemented here, we achieve model-

based aggregation of the data that allows spatially-

explicit estimation of survival and residency probabili-

ties at relatively fine spatial scales. By essentially

‘‘borrowing’’ information across space, the model also

improves precision of estimates at the nominal scale of

prediction (e.g., as compared to simple stratification

approaches; Saracco et al. 2008).

The hierarchical model described here is parameter-

ized to provide not just spatially-explicit, but also time-

specific estimates of population parameters. Time-

specific estimates of survival and residency probabilities

could also be achieved by applying maximum likelihood

estimation techniques (e.g., as implemented in the

software program TMSURVIV; Hines et al. 2003) to

the classical formulation of the transient CJS model

described by Pradel et al. (1997). However, as for the

spatial problem, data sparseness can make estimation of

large numbers of time-specific parameters using classical

methods difficult. Under the hierarchical modeling

framework, we can obtain year-specific estimates, and

improve precision on these estimates, by combining all

of the data within a single model that links data across

years (and space) via explicit model structure. Random

effects (e.g., to account for ‘‘heterogeneity’’) and

covariates could be included in models to further

improve the precision of parameter estimates (Royle

2007). It would even be possible to introduce time-

varying site-specific or individual covariates with miss-

ing data (e.g., for missed sampling occasions or

whenever an individual is not encountered), although

this would require specification of prior distributions for

covariates (Gimenez et al. 2009).

Most studies that have applied transient CJS models

to capture–recapture data have been largely concerned

with reducing negative bias in estimates of survival

probability (Sandercock 2006). Little attention has been

paid to modeling residency probability itself (Sasso et al.

2006, Whitaker et al. 2008), despite the clear links

FIG. 3. Mean and standard deviation (SD) of predicted apparent survival and residency probabilities, across all years, for adult
Wood Thrush at the scale of 18 blocks. Estimates are based on the spatial model applied to capture histories of 6241 birds from 179
Monitoring Avian Productivity and Survivorship (MAPS) stations operated between 1992 and 2003.
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between this parameter and other important population

attributes such as abundance, dispersal, and population

dynamics. The striking variation in residency probability

revealed by our Wood Thrush analysis emphasizes the

need for greater understanding of residency and

transience patterns and the factors driving them. The

model presented here, because it is parameterized

explicitly in terms of residency probability, should

facilitate such investigation. Nevertheless, we emphasize

that the residency probability parameterized here is

based on a model conditioned on first capture; as such, it

is confounded with encounter probability in a complex

fashion, rendering the parameter a mixture of both

ecological and sampling processes. We can resolve this

by exploiting an individual-based formulation of the

Jolly-Seber model (Royle and Dorazio 2008: Chapter

10), in which residency status applies to the population

of individuals alive in each year. This is ongoing

research.

The Wood Thrush analysis revealed broad-scale

spatial pattern in both survival and residency probabil-

ities. These patterns lend insight into population

dynamics and can direct conservation and research.

For example, regions with low Wood Thrush apparent

survival coincide with regions experiencing severe

population declines (Sauer et al. 2007). Because

mortality in long-distance migratory birds, such as

Wood Thrush, may be largely effected via processes

acting during the nonbreeding season (Sillett and

Holmes 2002), conservation efforts for this species may

be most effective if aimed at improving quality and

quantity of stopover and winter habitat. The spatial

pattern of residency probability draws attention to

regions of potentially low quality habitat or limited

habitat availability. Low residency probability in the

Northeast and Appalachian Mountains could be caused

by diminished habitat quality near latitudinal and

elevational limits of the species’ range (Roth et al.

1996). In the Midwest, where forest fragmentation has

been severe (Riitters et al. 2002), low residency

probability in some areas could reflect limited habitat

availability or low habitat quality due to high nest

predation or parasitism levels (Robinson et al. 1995).

The introduction of environmental covariates into the

model could test these hypotheses.

In addition to providing spatially explicit estimates of

vital rates to inform conservation and management,

further development and application of spatial capture–

recapture models offers the opportunity to better

investigate scales of autocorrelation in processes driving

population changes. Historical approaches to investi-

gating spatial and temporal pattern in vital rates are

limited in their ability to provide such information. In

the extreme, data sparseness can limit the resolution of

investigations to such an extent that little or no

information on spatial or temporal pattern is obtained,

and the scales of parameter estimates may have little

biological relevance. A modern approach to statistical

modeling and inference based on hierarchical models

makes much more efficient use of sparse monitoring

data and can provide a solid foundation for investiga-
tions of spatial and temporal variation in vital rates.

Such an approach is applicable to a variety of existing

broad-scale avian monitoring programs (e.g., Royle and
Dubovsky 2001, Robinson et al. 2009), and we hope it

will stimulate similar efforts for other taxa.
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SUPPLEMENT

Model implementation detail, R, and WinBUGS code, and data for the Wood Thrush example presented in the paper
(Ecological Archives E091-126-S1).
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