
1 23

Journal of Ornithology
 
ISSN 2193-7192
Volume 152
Supplement 2
 
J Ornithol (2012) 152:469-476
DOI 10.1007/s10336-010-0565-1

Spatial modeling of survival and residency
and application to the Monitoring Avian
Productivity and Survivorship program

James F. Saracco, J. Andrew Royle, David
F. DeSante & Beth Gardner



1 23

Your article is protected by copyright

and all rights are held exclusively by Dt.

Ornithologen-Gesellschaft e.V.. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you

wish to self-archive your work, please use the

accepted author’s version for posting to your

own website or your institution’s repository.

You may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.



EURING PROCEEDINGS

Spatial modeling of survival and residency and application
to the Monitoring Avian Productivity and Survivorship program

James F. Saracco • J. Andrew Royle •

David F. DeSante • Beth Gardner

Received: 13 September 2009 / Revised: 14 July 2010 / Accepted: 20 July 2010 / Published online: 10 August 2010

� Dt. Ornithologen-Gesellschaft e.V. 2010

Abstract Broad-scale bird-ringing programs are a core

component of national and international avian monitoring

and research efforts. Despite rich spatial structure in data

from these programs, little attention has been paid to spatial

modeling of demographic rates. Here we implemented a

Bayesian analysis of a hierarchical capture–recapture model

to provide spatially explicit (2� blocks) and year-specific

estimates of adult apparent survival (hereafter survival) and

residency probabilities for Common Yellowthroat Geothly-

pis trichas, a bird species commonly captured as part of the

Monitoring Avian Productivity and Survivorship (MAPS)

program in North America. The model was based on a

transient Cormack–Jolly–Seber model. We modeled spatial

dependence in survival and residency with an intrinsic

conditional autoregressive model and modeled capture

probability with a random block-level effect. We modeled

sex-effects on survival and residency probability, as well as

on two nuisance parameters, capture probability and the

probability of predetermining a bird to be a resident (based

on multiple within-season captures). Inclusion of sex effects

in the model illustrated how missing data are easily accom-

modated within the modeling framework. We found little

evidence of temporal variation in survival or residency.

Males tended to have higher and less variable survival and

residency probabilities than females. Capture probability

and probability of predetermining residency were higher for

males than for females. We found broad-scale spatial pat-

terns in survival and residency. Spatial variation was higher

for residency than for survival. Although the residency

parameter in our model applies to the subset of the population

that are newly ringed birds, clear spatial pattern and high

spatial variation suggests that this parameter has important

ecological relevance. Further development and application

of hierarchical capture-recapture models to data from bird-

ringing programs provides the opportunity to more thor-

oughly investigate spatial and temporal pattern in population

processes and inform conservation.

Keywords Capture–recapture model � Common

Yellowthroat � Conditional autoregressive model �
Geothlypis trichas � Hierarchical spatial model �
MAPS program

Introduction

Standardized broad-scale bird-ringing programs (or ‘‘bird-

banding’’ programs, as they are known in North America) are

a core component of national and international avian moni-

toring and research efforts (DeSante and Kaschube 2007;

Robinson et al. 2009). Despite the rich spatial structure of the

data collected by these programs (e.g., arrays of mist nets,

clusters of monitoring stations, regional collections of sta-

tions) and widespread interest in understanding spatial pat-

terns in population dynamics (e.g., Jones et al. 2007), little

attention has been paid to spatial modeling of capture–

recapture (or capture–recovery/resighting) data. Some level

of spatial aggregation of capture–recapture data from
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bird-ringing programs is necessary because data are too

sparse at very fine scales (e.g., individual mist net locations)

to provide meaningful information about population

parameters of interest. However, stratification across broad

regions (e.g., Saracco et al. 2008) is undesirable because it

may obscure spatial pattern at scales most relevant to pop-

ulation dynamics. Explicit modeling of spatial structure

allows aggregation of data at finer scales than would be

possible if data were assumed to be spatially independent and

enables relatively high-resolution inferences about popula-

tion parameters. In addition, modeling spatial structure can

also improve inference about covariate effects (e.g., weather,

habitat) on population parameters (Lichstein et al. 2002,

Webster et al. 2008).

Conditional autoregressive (CAR) models provide an

efficient means of modeling spatial structure in a variety of

data, and these models have seen widespread application to

avian point count studies (e.g., Lichstein et al. 2002;

Thogmartin et al. 2004; Webster et al. 2008). Recently,

CAR models have been extended to capture–recapture data

under a Bayesian hierarchical framework, and have been

applied to bird-ringing data collected as part of the Moni-

toring Avian Productivity and Survivorship (MAPS) pro-

gram in North America (Royle and Dorazio 2008, Ch. 11;

Saracco et al. 2010). The Bayesian hierarchical approach,

with Markov chain Monte Carlo (MCMC) implementation,

affords several advantages over classical approaches,

including (1) flexibility in modeling heterogeneity in

responses at a variety of levels from individuals to groups

using fixed or random effects and (2) ease of handling and

modeling missing data (both response and predictor vari-

ables). Such advantages make these models especially

well-suited to application to data from large-scale coop-

erative studies where missed sampling visits are common

and where primary interest is often in understanding spatial

pattern and heterogeneity in population parameters.

Here, we implement the hierarchical CAR model

described in Saracco et al. (2010) to provide spatially and

temporally specific estimates of adult apparent survival

(hereafter ‘survival’) and residency probabilities for a bird

species commonly captured as part of the MAPS program,

Common Yellowthroat Geothlypis trichas. We interpret

‘residents’ here to be (at least attempted) local breeders,

distinguishing them from ‘floaters’, dispersing birds, or

passage migrants. We acknowledge that the residency

parameter in our model is conditioned on first capture (it is

based on the ‘transient’ Cormack–Jolly–Seber, CJS, model;

Pradel et al. 1997) and thus applies to a subset of the larger

population of interest; however, we believe that spatial

modeling of this parameter can lend insight into demo-

graphic processes. We adapt the model of Saracco et al.

(2010) to highlight how the basic modeling approach can

accommodate simple random effects (here heterogeneity in

capture probability, p) and missing covariate data (here an

indicator variable for ‘sex’).

Methods

MAPS data

We applied our analysis to capture–recapture data collected

as part of the MAPS program between 1992 and 2003. The

MAPS program is a cooperative network of constant-effort

mist-netting stations operated across North America each

summer; it provides demographic data for [180 landbird

species (DeSante and Kaschube 2007). MAPS stations are

broadly distributed across the continent (Fig. 1). Station

densities are greatest near human population centers along

coasts and south of Canada; more than half are located

within natural protected areas.

MAPS field protocol consists of operating an array of mist

nets (typically ten 12 m 9 2.5 m nets) at each station

(approx. 20 ha) on 6–9 days each breeding season (May–

August). Days of mist net operation are generally spaced at

equal intervals, such that a given station is operated about

once every 10 days. Unringed birds captured during mist-

netting operations are identified to species, age, and (if

possible) sex (Pyle 1997), and are ringed with uniquely

numbered metal rings issued by the United States Geological

Survey Bird Banding Laboratory. Ring numbers of recap-

tures are carefully recorded. DeSante and Kaschube (2007)

provide additional details of data collection methods. The

MAPS protocol was standardized in 1992, and 531 stations

were operated between 1992 and 2003 for C4 years with

sufficient effort to be useful for survival analyses. Most

stations were operated for at least half of the 12 years.

We selected Common Yellowthroat as our target species

for analysis. It is a migratory species typical of shrub land and

wetland habitats (Guzy and Ritchison 1999). It breeds across

most of the United States and Canada, and in parts of Mexico;

and winters from the southern United States to northern South

America. North American Breeding Bird Survey data suggest

that this species is experiencing a small (about 0.5%/year) but

significant long-term (40? years) population decline. It is one

of the most commonly captured species in the MAPS program

with 12,110 adult birds ringed between 1992 and 2002 at 295

stations (multiple stations \1 km apart considered single

stations) where it is a regular breeder. It is common in both

eastern and western North America and shows large spatial

variation in population trend (Sauer et al. 2008).

Data analysis

We aggregated MAPS capture–recapture data at the spatial

scale of 2� blocks (hereafter ‘grid cells’). This scale
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allowed for relative computational efficiency and pre-

vented inclusion of large numbers of grid cells without data

when examining patterns across the program-wide (i.e.,

continental) scale. Encounter histories were summarized

for each individual bird at the scale of the MAPS station (or

multiple stations if \1 km apart) within these grid cells.

Although multiple capture–recapture sessions were con-

ducted at a MAPS station each year (described above), we

collapsed capture histories to provide a single encounter

indicator for each year. Following the ad hoc robust design

transient model (Hines et al. 2003), we used multiple

within-season encounters only to ‘predetermine’ some

individuals as local breeding residents (see below).

We implemented the hierarchical model described in

Saracco et al. (2010). Here we provide a brief description and

modifications specific to the analysis presented here. We

based models on i = 1,…,N individuals, j = 1,…,M grid

cells, and t = 1,…,T years. We modeled observations on the

‘residency’ and ‘alive’ states of individual birds, as well as

for latent (unobserved) variables representing the true alive

and residency states. We modeled observations of residency

as a Bernoulli random variable, r(i), conditional on the true

(unobserved) residency state R(i):

rðiÞjRðiÞ�Bern RðiÞqijfi

� �
;

where qijfi is the probability of predetermining individual

i being a resident at its MAPS station of capture in grid cell

j in the year of its initial capture, denoted here by the

subscript fi. We assessed predetermined residency status

based on within-season recapture data of individuals in their

initial year of capture (i.e., the year they were ringed). We

set r(i) = 1 (predetermined residents) for individuals

captured on multiple days [6 days apart in their initial

year of capture and r(i) = 0 otherwise (Hines et al. 2003,

Nott and DeSante 2002). In our analysis of Common

Yellowthroats, the number of predetermined residents was

2,289 out of 12,110 individuals in the dataset (19%). We

modeled the true residency state as:

RðiÞ�Bern pijfi

� �
;

where pijfi is the probability that individual i at location

j and time fi is a resident. We let R(i, j, t) = 1 for

individuals that are resident in the sampled population and

R(i, j, t) = 0 for non-residents (i.e., transients).

We modeled annual observations of the alive state of

individuals, y(i, j, t), conditional on the true ‘alive state’

z(i, j, t):

yði; j; tÞjzði; j; tÞ�Bern zði; j; tÞpijt

� �
;

where pijt is the capture probability of individual i at its

station of capture in grid cell j at time t. The alive state is

defined such that z(i, j, t) = 1 denotes a marked individual

that is alive and at its station of capture in grid cell j at time t,

and z(i, j, t) = 0 indicates a marked individual not alive or

available for sampling. Similarly, y(i, j, t) = 1 for

individuals encountered at their station of capture in grid

cell j in year t and y(i, j, t) = 0 for those not encountered.

Thus, if z(i, j, t) = 0 then y(i, j, t) is a Bernoulli trial with

probability 0, while if z(i, j, t) = 1 then y(i, j, t) is a Bernoulli

trial with probability pijt. We modeled z(i, j, t) conditional on

z(i, j, t - 1) as:

zði; j; tÞjzði; j; t � 1Þ�Bern RðiÞzði; j; t � 1Þ/ijt�1

� �
:

That is, an individual i that was a resident and present at

its station of capture in grid cell j in the previous time

period (t - 1) will be alive and available for sampling at its

Fig. 1 Distribution of 760

Monitoring Avian Productivity

and Survivorship (MAPS)

stations operated between 1992

and 2003 (multiple stations

\1 km apart considered one

station)
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station of capture in that grid cell in the current time period

with probability /ijt-1, the survival probability. Note that

because CJS models are conditional on first capture, we set

z(i, j, fi) = 1 with probability 1.

We developed the spatial model in terms of the two

population parameters of interest, survival probability, /ijt,

and residency probability, pijt. We modeled survival and

residency probabilities of individual i in grid cell j during

year t as dependent on location, sex, and year according to:

logitð/ijtÞ ¼ lt þ at � sexi þ uj

and

logitðpijtÞ ¼ at þ bt � sexi þ vj;

where /ijt is survival probability for individual i at its

station of capture in grid cell j between occasion t and

t ? 1, and pijt is residency probability for individual i at its

station of capture in grid cell j on occasion t. The

parameters lt and at represent the year-specific means on

the logit scale for female survival (/t) and female

residency (pt), respectively; at and bt are year-specific

effects of an indicator variable sexi, where sex = 1 for

males and 0 for females; and uj and vj are spatially

autocorrelated random effects parameterized according to

an intrinsic CAR model (Besag et al. 1991; Saracco et al.

2010). The intrinsic CAR model estimates j grid-cell

random effects conditional on neighboring grid cells

according to:

uj

��u�j ¼ Norm
1

nj

X

k2N j

uk; r
2
/=nj

0

@

1

A and

vj

��v�j ¼ Norm
1

nj

X

k2N j

vk; r
2
p=nj

0

@

1

A

where N j denotes the neighborhood of spatial location j,

which is the collection of identities of neighboring loca-

tions, and nj is the number of neighbors of location j; i.e.,

nj ¼ dimðN jÞ. We defined neighbors of individual grid

cells based on a ‘queen’s’ neighborhood (cardinal direc-

tions plus diagonals). The intrinsic CAR model requires

estimation of spatial heterogeneity for both uj and vj; in

the Bayesian framework, we estimate these as precision

parameters, s/ and sp, which can be transformed to

standard deviations according to r/ ¼ 1=
ffiffiffiffiffi
s/
p

and rp ¼
1=

ffiffiffiffiffi
sp
p

.

We also defined linear models for the nuisance param-

eters, p and q. Although capture probability, p, can be

modeled as a function of covariates (e.g., Julliard 2004;

Saracco et al. 2008, 2010), it is generally difficult to

quantify factors that affect capture probability indepen-

dently from population parameters. Here we modeled p as

varying by sex and grid cell:

logitðpijÞ ¼ gþ c� sexi þ ej;

where g is the overall mean, c is the linear parameter for

the sex effect, and ej is a grid-cell level random effect

assumed to be drawn from a normal distribution with mean

zero and precision sp. We expected capture probability to

vary by sex because captures (of sexed individuals; see

below) were skewed toward males (60% of individual

adults) and because males may be more active during the

breeding season (when females on nests). We modeled p as

time-constant, as previous analyses of these data showed

little support for time dependence in p and relatively

consistent year-specific estimates of p (DeSante and

Kaschube 2007; Saracco, unpublished data). These results

are expected because effort among years at a given MAPS

station is typically very consistent (as dictated by the field

protocol). Because the probability of predetermining a

resident (i.e., catching an individual multiple times in a

season) also likely reflects sex-specific differences in

behavior, we also included a time-constant sex effect on q:

logitðqiÞ ¼ bþ d � sexi

As described above, we included linear (on logit scale)

‘sex’ effects in the models for both the population

parameters (/ and p) and the nuisance parameters (p and

q). Although sex is easily determined for yellowthroats

because of strong sexual plumage dimorphism (and to a

lesser degree breeding condition and size dimorphism), sex

data were not recorded for a small number of individuals

(75 or 0.6% of all individuals in the analysis). In order to

include all individuals in analyses (not just those sexed),

we treated sex as a random, rather than fixed, variable.

Specifically, we modeled sex as:

sexi�Bern wð Þ;

where w is the probability of an individual being a male.

We implemented a Bayesian analysis of the model. We

used proper uniform prior distributions, U(0, 1), for the

inverse-logit transformed intercepts from the logit-linear

models and for w; Gamma(0.001, 0.001) priors for precision

parameters s/, sp, and sp; and Norm(0, 0.1) as priors for the

coefficients for sex effects, at, bt, c, and d. We obtained

posterior distributions by sampling full conditional distri-

butions using Markov chain Monte Carlo (MCMC) methods

(Gilks et al. 1996), as implemented in WinBUGS (Spiegel-

halter et al. 2003) via the R2WinBUGS package (Sturtz et al.

2005) in R (R Development Core Team 2007). Posteriors

were based on 20,000 iterations of two chains after dis-

carding the first 4,000 iterations and thinning by two. We

assessed convergence by examining trace and density plots

of posterior distributions of the two chains and from values of

the potential scale reduction factor, R̂, which were\1.1 for

all model parameters (Gelman et al. 2003).
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Results

Apparent survival probability, /, for adult Common Yel-

lowthroats tended to be higher for males than for females

[posterior mean across years (95% credible inter-

val) = 0.494 (0.406–0.625) for males; 0.463 (0.295–0.639)

for females] and was also more consistent among years for

males than for females (range in annual means: 0.460–0.573

for males; 0.344–0.557 for females; Fig. 2). Residency

probability showed a similar pattern (i.e., males tending to

have higher and more consistent estimates) with mean (95%

credible interval) of 0.515 (0.395–0.657) for males com-

pared to 0.486 (0.333–0.727) for females. The range of

annual posterior means for p was 0.459–0.587 for males

compared to 0.400–0.666 for females (Fig. 2). For both /

and p, 95% credible intervals overlapped broadly among

years. The greatest year-specific difference in / between

sexes was in 2002 (i.e., 2002–2003 survival), with the mean

male survival 54% higher than female survival in that year

[mean (95% credible interval) = 0.532 (0.452–0.619) for

males; 0.344 (0.248–0.455) for females]. For p, the greatest

year-specific difference was in 1996, when residency prob-

ability averaged 42% higher for males than for females

[mean (95% credible interval) = 0.587 (0.489–0.686) for

males; 0.412 (0.317–0.520) for females].

Mean capture probability, p, was 65% higher for males

than for females [mean (95% credible interval) = 0.533

(0.488–0.578) for males; 0.323 (0.275–0.376) for females;

Fig. 2]. The probability of predetermining a resident, q,

was just slightly (15%) higher for males than for females

[mean (95% credible interval) = 0.384 (0.359–0.409) for

males; 0.332 (0.297–0.368) for females; Fig. 2].

Common Yellowthroats showed broad-scale spatial

pattern in both / and p (Fig. 3). The mean predicted /
tended to be highest in the west and northeast and lowest in

the southeastern coastal plain. In contrast, p tended to be

highest in the southeast and northwest and lowest in the

southwest and northeast. Spatial variation was much higher

for residency (mean rp = 1.728; 95% credible interval:

1.322–2.240) than for survival (mean r/ = 0.552; 95%

credible interval: 0.356–0.802) probability. Spatial varia-

tion in capture probability was relatively low (mean

rp = 0.409; 95% credible interval: 0.232–0.609).

Discussion

Data from standardized bird-ringing programs offer an

ideal opportunity for developing spatial models that can

lend insight into the scales of population processes and

resulting patterns in distribution, abundance, and trends.

Here we describe a hierarchical version of the ad hoc

robust design transient model (Pradel et al. 1997; Hines

et al. 2003) that allows spatial dependence in survival and

residency parameters through inclusion of conditional

autoregressive terms (Royle and Dorazio 2008, Ch. 11;

Saracco et al. 2010). We illustrate the model with an

application to data on Common Yellowthroat collected as

part of the Monitoring Avian Productivity and Survivorship

(MAPS) program in North America, but the basic approach

could be applied to constant effort schemes across Europe

(Robinson et al. 2009) and elsewhere as standardized mist-

netting programs expand to other regions and continents

(e.g., DeSante et al. 2005).

Our general modeling approach affords several advan-

tages over historical approaches to analyzing spatial cap-

ture–recapture data, such as those derived from ringing

programs (e.g., DeSante and Kaschube 2007; Saracco et al.

Fig. 2 Posterior means and 95% credible intervals for parameters

from the hierarchical spatial model applied to 12-year (1992–2003)

capture histories of 12,110 adult Common Yellowthroats (Geothlypis
trichas) from 295 Monitoring Avian Productivity and Survivorship

(MAPS) stations (multiple stations \1 km apart considered one

station). Parameters are summarized by sex and include: annual

apparent survival probability (/; top), annual residency probability

(p; middle), capture probability (p; bottom left), and probability of

predetermining a resident (q; bottom right)
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2008). capture–recapture data are often sparse at local

scales, preventing fine-scale parameter estimation (Royle

et al. 2007). By modeling spatial dependence using the

CAR model, we are able to stratify data at relatively fine

scales and improve precision of parameter estimates at

those scales. Our choice of spatial resolution for the present

analysis (2� blocks) was motivated in part by computa-

tional efficiency, but also by a desire to avoid including

large numbers of grid cells without MAPS stations. How-

ever, some spatial gaps in data were unavoidable given the

distribution of stations, which was not design-based (at

least at the program-wide scale; Fig. 1). Finer scale strat-

ification would be possible in cases where interest is in

patterns across smaller regions, provided station densities

are high.

By estimating population parameters at relatively fine

scales, scales of population processes can be better

understood, and appropriate regions for conservation more

easily identified. For example, patterns in survival and resi-

dency revealed by our analysis of the yellowthroat data were

not always consistent with boundaries of existing conser-

vation units (e.g., Bird Conservation Regions). In some areas

there appeared to be spatial gradients across individual

regions [e.g., survival from north (high) to south (low) along

the Appalachian Mountains]; in others, patterns were broad,

encompassing several regions (e.g., survival high across

much of the western United States). At the broadest scales,

spatial structure of survival and residency might reflect

regional variation in major terrestrial ecosystem types, cli-

mate, migratory strategies, or overwintering areas (Avise

and Ball 1992; Guzy and Ritchison 1999; Lovette et al. 2003;

Pagenkopp et al. 2008). For example, southern populations

may be relatively sedentary, while migratory populations

from eastern and western portions of the breeding range may

overwinter in different areas. Eastern migrants may over-

winter largely in eastern and southern parts of the winter

range, while western migrants may overwinter in the north

and west (Lovette et al. 2003). At finer scales, spatial vari-

ation in population parameters may reflect effects of spatially

explicit (e.g., landscape scale) environmental variables.

Inclusion of such variables in models as covariates could

further improve parameter estimates and understanding of

factors driving demographic rates.

The spatial pattern of Common Yellowthroat survival

(with the possible exception to the New England–mid-

Atlantic coast) is remarkably consistent with spatially

explicit estimates of long-term (1966–2003) population

trend for this species (Sauer et al. 2008), highlighting the

utility of analyses such as these for identifying proximate

demographic causes of spatial variation in population

trends (see also Saracco et al. 2010). The scale of spatial

pattern for survival was smaller and more heterogeneous in

the east compared to the west (in part possibly due to

differences in station coverage) and populations tended to

have lower survival in the east where populations tend

to be declining (especially southeast) than in the west

where they seem to be mostly increasing.

The spatial pattern in yellowthroat residency contrasted

somewhat with the pattern of survival. Regions where

survival probability was high and residency probability was

low (e.g., due to large numbers of ‘floaters’; Brown 1969)

could suggest some combination of good non-breeding

season conditions and breeding habitat limitation. In con-

trast, areas with low survival and high residency could

suggest areas where individuals experienced low survival

due to poor non-breeding season conditions, with sub-

sequent ample opportunity for new territory establishment

(and thus few floaters).

In addition to contrasting spatial patterns, yellowthroat

residency probability showed greater spatial heterogeneity

Fig. 3 Mean predicted apparent survival and residency probabilities

for adult male and female Common Yellowthroats (Geothlypis
trichas) derived from the hierarchical spatial model applied to data

from the Monitoring Avian Productivity and Survivorship program

(1992–2003). Data for 12,110 individuals from 295 MAPS stations

(black dots; multiple stations \1 km apart considered one station)

were included in the analysis. Predicted values represent posterior

means averaged across all years plus spatial effects at the scale of 2�
blocks
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than did yellowthroat survival probability. This relatively

high spatial variance in residency probability is in accord

with results for other species (Saracco et al. 2010, and

unpublished data), and suggests an important ecological

role for this parameter. Although we highlight the potential

role of residency based on our results, we acknowledge that

residency probability, as parameterized here, is based on a

CJS model, and as such is conditioned on first capture,

confounding its interpretation to some degree because of its

representation of a mixture of both ecological and sampling

processes. We are currently investigating the use of an

alternative model based on an individual-based formulation

of the Jolly–Seber (JS) model (Royle and Dorazio 2008,

Ch. 10) to address this problem.

Additional advantages of the hierarchical Bayesian

approach taken here include the ability to easily handle

missing data with prior distributions, improved ability to

provide year-specific (as well as spatially explicit) esti-

mates of population parameters, and the easy accommo-

dation of covariates and random effects (Gimenez et al.

2009; Saracco et al. 2010). Our model for Common Yel-

lowthroat suggested relatively weak annual variation and

sex differences in survival and residency probabilities.

However, both residency and survival probabilities tended

to be higher and more consistent for males, a pattern that

could result from sex-specific differences in non-breeding

season habitat use (Ornat and Greenberg 1990) if males

exclude females from higher quality and less variable

habitats (e.g., Marra 2000). Higher male survival could

also reflect higher between-year fidelity to breeding terri-

tories. Sex-specific differences in capture probability and

the probability of predetermining a bird to be a resident

were much stronger, with males more likely to be recap-

tured within (necessary to predetermine a bird as a resi-

dent) and between years. This is likely due to females

being less active and more closely tied to the nest site for

incubation and brooding (Guzy and Ritchison 1999).

Our application of the hierarchical model described here

illustrates some of the advantages of hierarchical models

for analyzing broad-scale capture–recapture data. Further

development of these models will enable more thorough

investigation of the spatial and temporal scales at which

population processes operate, providing important insights

into population dynamics to direct future research and

guide conservation efforts.
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Royle JA, Kéry M, Gautier R, Schmid H (2007) Hierarchical spatial

models of abundance and occurrence from imperfect survey

data. Ecol Monogr 77:465–481

Saracco JF, DeSante DF, Kaschube DR (2008) Assessing landbird

monitoring programs and demographic causes of population

trends. J Wildl Manage 72:1665–1673

Saracco JF, Royle JA, DeSante DF, Gardner B (2010) Modeling

spatial variation in avian survival and residency probabilities.

Ecology 91:1885–1891

Sauer JR, Hines JE, Fallon J (2008) The North American breeding

bird survey, results and analysis 1966–2007. Version 5.15.2008.

USGS patuxent wildlife research center, Laurel, Maryland, USA.

Available at http://www.mbr-pwrc.usgs.gov/bbs/. Accessed 10

Sep 2009

Spiegelhalter D, Thomas A, Best N, Lunn D (2003) WinBUGS user

manual version 1.4. Available at http://www.mrc-bsu.cam.ac.uk/

bugs. Accessed 8 Sep 2009

Sturtz S, Ligges U, Gelman A (2005) R2WinBUGS: a package for

running WinBUGS from R. J Stat Softw 12:1–16

Thogmartin WE, Sauer JR, Knutson MG (2004) A hierarchical spatial

model of avian abundance with application to cerulean warblers.

Ecol Appl 14:1766–1779

Webster RA, Pollock KH, Simons TR (2008) Bayesian spatial

modeling of data from avian point count surveys. J Agric Biol

Environ Stat 13:121–139

S476 J Ornithol (2012) 152 (Suppl 2):S469–S476

123

Author's personal copy

http://www.mbr-pwrc.usgs.gov/bbs/
http://www.mrc-bsu.cam.ac.uk/bugs
http://www.mrc-bsu.cam.ac.uk/bugs

	Spatial modeling of survival and residency and application to the Monitoring Avian Productivity and Survivorship program
	Abstract
	Introduction
	Methods
	MAPS data
	Data analysis

	Results
	Discussion
	Acknowledgments
	References


